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Abstract

This paper studies the minimum number of colors for an edge-coloring
of a graph such that adjacent vertices are distinguished by their color
sets (colors of edges that are incident to them). Such a coloring is called
adjacent vertex distinguishing. We find optimal adjacent vertex distin-
guishing colorings of the multidimensional mesh (toroidal or not) and of
the hypercube. We show that for both graphs, this number of colors is
equal to the maximum degree of the graph plus one.
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1 Introduction

All graphs we deal with are undirected, simple and connected.

Let G = (V, E) be a graph with vertex set V' and edge set E.

A proper edge coloring ¢ is a mapping from F to N satisfying c(zy) # c(yz),
for any zy, yz € E. For any vertex z € V, let S(z) denote the set of the colors
of all edges incident to z.

As defined in [BHBLW99, BRS03], a proper edge coloring ¢ is said to be
verter distinguishing if S(z) # S(y), for any z,y € V, # # y. The minimum
number of colors among all vertex distinguishing colorings of a graph is called
the observability of the graph in [CHS96].

In this note, we study a relaxed version of this parameter in which only adja-
cent vertices have to be distinguished by their color sets (see [BGLS, ZLWO02]).
Formally, an adjacent vertexr distinguishing edge coloring is a proper edge-
coloring satisfying S(z) # S(y), for any z,y with zy € E. Let x,(G) denote
the minimum number of colors of any AVD-coloring of G.

Few is known about AVD-colorings. In [BGLS], the authors prove that
X% (G) < 5 for graphs of maximum degree 3 and x/,(G) < A(G) + 2 for bipartite
graphs.

The following conjecture was made in [ZLW02]:



Conjecture 1 Let G be a connected graph of maximum degree A and different
from Cs and K5. Then
A<xL(G)<A+2.

Notice that x4 (G) is obviously greater than A and if G has two adjacent
vertices of degree A then x,(G) > A+ 1.

The purpose of this paper is to find AVD-colorings of (toroidal or simple)
multidimensional meshes and of hypercubes, with as few colors as possible. In
fact we shall present stronger results that bound the number of colors needed
for an AVD-coloring of the Cartesian product of a graph by a path or by a cycle.
These results allow us to compute the exact value of the parameter x/,.

The d-dimensional mesh My, n, . n, is the Cartesian product of d paths:
Mh,lz,m,ld = Pl1 X P12 X ... X Pld-

The d-dimensional toroidal mesh T'My, 1, 1, is the Cartesian product of d
cycles: TMll,lg,...,ld = Cll X 012 X ... X Cld~

The d-dimensional hypercube Hy is the Cartesian product of K5 by itself d
times: Hd = Hd_1 X ](2, H1 = [\72

We will use the following notation all along the paper: The 2-dimensional
mesh M, , has vertex set V = {z; ;,0<i<m—1,0<j <n—1} and edge set
E= {xi,jxi,j+1;0 <i:<m—-—1,0<35< n—Q}U{l‘Z"jl‘H_lyj,O <i1<m-—-2,0<
j<n—1}

If G is the mesh M,, , then we denote by Vi the sequence of vertical edges
Vi = (Tk-1,0%k,0,- -, Th—1n-1%kn-1) With 1 < k& < m — 1 and for an edge-
coloring ¢ of G, we will write ¢(Vx) = (¢1,¢2,...,¢n—1) to mean that the first
edge of Vi is assigned the color ¢;, the second the color ¢3, and so on.

Similarly, we denote by Hy the sequence of horizontal edges

Hi = (Zk—1,086-11,- - Th—1,n—2Tk—1,n—1) With 1 < k < m and for an edge-
coloring ¢ of G, we will write ¢(H#x) = (c1,¢2,...,¢n—1) to denote the colors of
the edges of Hy.

We define the sequences of edges of the toroidal mesh T'M,, ,, as we did for
the mesh M, , but in that case, we have the sequence Vo = (£m-1,0%0,0; - -, Zm-1,n-120,n—1)
and one edge more at the beginning of each sequence Hy: Hi = (Tp—1,n-1Zk-10,--.)-

2 AVD-colorings of 2-dimensional meshes

Let’s begin by the following lemmas :

Lemma 1 Let M, ,, be a 2-dimensional mesh, withn,m >3, n4+m > 7. Then
Xa(Mmn) =5.

Proof : We define the coloring ¢ of Hi (1 < k < m) of the mesh M,, , by:

{ (H1) =1(4,3,4,3,..),
c(Hi) =(c )—I—l)mod5f0r2<z<m
1

(
and the coloring of Vi (1 <k <m —1) by:



cW) =1(1,2,1,2,..),
c(Vi) =(c(Vic1)+ 1) modbfor 2 <i<m—1.

See Figure 1 for an illustration of this coloring.

Figure 1: An AVD-coloring for the mesh Ms 7.

First, one can see that, by construction, ¢ is a proper coloring. It remains
to show that ¢ is an AVD-coloring. Notice that for any two vertices # and y, if
d(z) # d(y) then S(z) # S(y). Thus, we only have to compare the sets of colors
of adjacent vertices of the same degree.

e Case 1: degree 2 vertices. Since there is only four vertices of degree 2
and since they form an independent set in M, ,, there is no problem with
these vertices.

e Case 2: degree 3 vertices. Remark that for any i, 1 < ¢ < m —
3,S(zi0) = {o,a+ 1,8} and S(ziy1,0) = {a+ 1,0+ 2,58+ 1} for some
a,B € {0,1,2,3,4}, where addition is taken modulo 5. This proves that
S(zio) # S(®ig1,0). A similar argument yields S(z; n—1) # S(@it1,n-1).
For two adjacent vertices u and v on the horizontal border, the two hori-
zontal edges incident to u have the same color as the two ones incident to
v. But the colors of the verticals edges of u and v are different. Thus the
sets of colors are different.

e Case 3: degree 4 vertices. By construction, we have S(z; ;) = {a, o +
1,8, 8+1} for some o, 3 € {0, 1,2, 3,4}, where addition is taken modulo 5.
Moreover, S(z; j+1) = {a+1,a+2,8,8+ 1} if j is even and S(z; j4+1) =
{a—1,a,8,8+ 1} if j is odd. Therefore, S(z; ;) # S(zi j+1)-

On the other hand, S(z;i41;) = {a+1,a+2,5+1,8+2}. Thus, S(z; ;) =
S(ziy1,5) if {a, 8} = {a + 2, 8+ 2} which is impossible in Zs.
Hence ¢ is an AVD-coloring.
O

In the two following propositions, we give the exact values of x}, (T M, ») for
any m and n.

Proposition 1 Let m,n € Z, m,n > 3. If m or n is even, then X', (T My, ») =
5.



Figure 2: An AVD-coloring for T'Ms 6.

Proof : Without loss of generality, we assume that n is even. We discuss five
cases following values of m:

Case 1: m = 0 mod 5. Let us construct the following edge-coloring for
any T My, ,, (see Figure 2 for TMs ¢) :

c(Hi) = (14+2,i4+3,i4+2,i4+3,...,i4+3,i4+2), for each 1 < i < m, where
t + j is taken modulo 5 with 2 < j < 3.

e(Vi) = (4,i+ 14,0+ 1,...,i,i+ 1), for each 0 < i <m — 1, where i +j
is taken modulo 5 with 0 < 57 < 1.

Observe that in a such coloring, for each uv € E(T'Mp, ), there exists
always one color j € S(v) such that j ¢ S(u). Therefore ¢ is an AVD-
coloring.

Case 2: m = 3 mod 5. An AVD-coloring of T'M3 ,, is illustrated in By of
Figure 3. For m > 3, by Case 1, we obtain an AVD-coloring of T'M,_3 »,
such that x%, (7'M —3,) = 5. To construct an AVD-coloring of T'M,, ,,, we
extend the AVD-coloring of T'M,,_3, by joining to it the AVD-coloring
of TMs ,, (see Figure 3).

Case 3: m =4 mod 5. An AVD-coloring of 7'M, , is illustrated in Figure
4. For m > 4, by Case 1, we obtain an AVD-coloring of T'M,,_4 , such
that x,(TMm—4,) = 5. To construct an AVD-coloring of T'M,, ,, we
extend the AVD-coloring of T'M,;,_4 , by joining to it the AVD-coloring
of TMy, (it is obtained by replacing in Figure 3 the block B, by the
coloring illustrated in Figure 4).

Case 4: m = 1 mod 5. An AVD-coloring of T'Ms ,, is given in Figure 5.
For m > 6, by Case 1, we obtain an AVD-coloring of 1T'M,,_s , such that
X4y (T'Mp—6n) = 5. To construct an AVD-coloring of 7'M, ,,, we extend
the AVD-coloring of T'M,,,_s » by joining to it (as it is done in above cases)
the AVD-coloring of T'Ms .

Case 5: m = 2mod 5. Let m = m/ + m” such that m’ = 3 mod 5 and
m' = 4 mod 5. By Cases 2 and 3, we obtain the AVD-colorings of T M, »



B, =TM(5k,n)

Figure 4: An AVD-coloring for 7'M, .

and T M, , respectively such that x},(T'Mp, n) =5 et x4 (TMmn n) = 5.
As in precedent cases, one can construct an AVD-coloring for T'M,, , by
joining together those of T'Mp,: ,, and T M, .

In the following proposition, we study the 2-dimensional toroidal mesh when
m and n are odd.

Proposition 2 Let m,n € Z, m,n > 3. If m and n are odd then x' (T My, ») =
5.

Proof : See Figure 6 for m = n = 3. The case m = 9 and n = 3 is obtained by
joining three copies of T'M3 3 colored according to Figure 6. The case m =n =9
is obtained by joining three copies of T'My 3.

Now, we decompose the rest of the proof into five cases:

e Case 1: m = Omod5. The AVD-coloring of T'M,, , is obtained as

follows, for 1 <i<m—1land 1 <j<m:

c(Vo) =1(0,1,0,1,0,...,1,0)
e(Vi) = (ec(Viz1) +1) mod 5
e(M;) =G+1,7+3,j+2,...,j+3,j+2)mod5b



Figure 6: An AVD-coloring for T'M3 3.

See Figure 7 for an example.

Figure 7: An AVD-coloring of T'Ms 7.

e Case 2: m = 1 mod 5. For m > 6, the AVD-coloring of T'M,;, ,, results
from joining one copy of T'M,,_s ,, given by Case 1 with one copy of T'Ms ,
colored according to Figure 8.

e Case 3: m = 2mod5. For m = 7, an AVD-coloring is illustrated in
Figure 9. For m > 7, we join one copy 1'M,,_7 , with the coloring given
by Case 1 with one copy of T'M7 , colored according to Figure 9.

e Case 4: m = 3modb. The cases m = n =3 and m = 3, n = 9 are
solved in the beginning of the present proof. The case m = 3, n = 5 can
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Figure 9: An AVD-coloring of T'Mv7 7.

be solved with Case 1 if we take m =5 and n = 3. Thecase m =3, n =7
is similar to Case 3 after permuting m and n. Similarly, when m = 3,
n = 11 by permuting m and n, we solve the case as it is given in Case 2.

So, for m > 13, we join one copy of TM,_13, (Case 1) with one copy of
TMs , (Case 2) and one copy of T M7, (Case 3).

e Case 5: m =4 mod 5. The beginning of the present proof gives the case
m = n = 9 and the other cases when m = 9 are solved in the precedent
cases. So, for m > 14, we join one copy of TMp,_14, (Case 1) with one
copy of TMya, (Case 3).

3 AVD-colorings of n-dimensional meshes and
hypercubes

To find the minimum number of colors for an AVD-coloring of multidimensional
meshes and hypercubes, we shall prove more general results concerning AVD-
colorings of the Cartesian product of a graph by a path or a cycle.



Theorem 1 Let d > 2 be an integer and let G be a graph of marimum degree
A < d—1. Ifthere exists an AVD-coloring of G with d colors, then x!, (G x P3) <
d+ 1.

Proof : Let d = x,(G). The graph G' = G x P, consists of two copies Gg
and G1 of G and a perfect matching between them. Take an AVD-coloring ¢
of G with colors 0,1,...,d — 1. For an edge e (a vertex u, respectively) of G,
let e; (u; respectively) be the corresponding edge (vertex respectively) of G; for
i=0,1. A coloring ¢’ of G’ is defined as follows:

for each e € E(G),

'(eg) = c(e) and ¢(e1) = (c(e) + 1) mod d,

and for each u € V(G),
(uouy) = d.

It is routine to see that ¢’ is an AVD-coloring. |

Theorem 2 Let d > 2 be an integer and let G be a graph of marimum degree
A < d—1 and of minimum degree 6 > 2. If there exists an AVD-coloring of G
with d colors, then x5 (G x Cy) < d+ 2.

Proof : Let ¢ be an AVD-coloring of G with the d colors 0,1,...,d — 1. Let
G' = G x Cy. The graph G’ consists in k copies of G, say Go,Gq,...,Gr_1;
with for each 7,0 < 7 < k — 1, a perfect matching linking each vertex of copy
G; with the corresponding vertex of G;y1 (addition modulo k). For an edge e
(a vertex u, respectively) of G, let e; (u;respectively) be the corresponding edge
(vertex respectively) in Gj.

Case 1: k is even. The coloring ¢’ of G’ is described below:
for each e € E(G), for each ¢,0 < i < k%, set

{ ' (ea;) = c(e),
¢ (e2it1) = (c(e) + 1) mod d.

For the edges of the perfect matchings, we add two new colors d and d + 1:
for each u € V(G), for each j,0 < j < ]“2;2, set

{ ¢ (ugjuzjpr) = d+ 1,
c/(uzj41u2j42) = d.

An illustration is given in Figure 10.

Now, let us prove that ¢’ is an AVD-coloring: First notice that as ¢ is an AVD-
coloring of G, ¢’ is an AVD-coloring of each copy G;. Next, let j € {0,1,...d—1}
be a color such that j € S(usg;) and (j — 1) mod d € S(ug;) (there always exists
one). Then, by the definition of the coloring ¢, we have j € S(ugi4+1), which
proves that these two vertices have distinct sets of colors.
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Figure 10: The coloring ¢’ of G’ when £ is even.

Case 2: k is odd. The coloring ¢/ of G’ is constructed first from the coloring
given in Case 1 for the copies Gy, G1, ..., Gg_3, i-e:
for each e € E(G), set

d(eq;) = cle), 0<i< ’“2;3
c(e2i41) = (c(e) + 1) mod d, 0<:i< ?5,
and for each u € V(G), set
{ CI('UQj'U2j+1) =d+1, 0<j< k?2;3
(ugjprusjqe) =d,  0<j<ES

Then for the edges of Gx_3, set

¢ (eg—2) = c(e) + 1 (without modulo) for d even
¢'(ex—2) = T(c(e)) for d odd
where 7 is a bijection from {0, 1,...d— 1} onto {1,2,...d —1,d} defined by:

i—1, ford<i<d—-3ori=2
d—2, fori=0

. d—1, fori=1
T(i) = d—3 fori=3 for d > 5,
2, fori=d—2
d, fori=d—-1

and 7(0) =2, 7(1) =3, 7(2) = 1 for d = 3.
For Gy _1, set

¢enr) = o(e(e)),
where ¢ is a bijection from {0,1,...d —1} onto {1,2,...d —1,d+ 1} defined
by:

142, for0<i<d-3
o(i) =< 1, fori=d—2 for d even and,

d+1, fori=d—1



t4+1, forl<i<d—bori=d-—3
d—3, fori=0

o(i)=< d—1, fori=d—-4 for d odd, d # 3,
d+1, fori=d—-1
1 fore=d—-2

bl

and 0(0) =1, o(1) =2, 0(2) =4 for d = 3.
For each edge between copies Gg_a, Gi_1 and Gy, set

' (ug-2up—1) =0,
' (ug—1up) = d.

An illustration is given in Figure 11 when d is even.

G,

k-1

Figure 11: The coloring ¢’ of G’ when k is odd and d is even.

Now, let us prove that ¢’ is an AVD-coloring when d is even. First, as for
the previous case, it is not difficult to see that since ¢ is an AVD-coloring of G,
then ¢ is an AVD-coloring of each copy G; (in particular for the copy Gg_1, as
o is a bijection). Next, notice that a vertex u; of copy Gj is distinguished from
a vertex ujy1 of copy Giqq, for 0 < ¢ < k — 4 since the coloring for this part
of the graph G’ is similar to the one defined for even k. Thus we only have to
check that two adjacent vertices from copies G _3, Gx_2, Gr_1 and Gy receive
distinct sets of colors: let u be a vertex of G and let S = S¢(u) denote its set of
colors with the coloring c.

Let j €{0,1,...d — 1} be a color such that j ¢ S(ux_3) and j+ 1 modd €
S(ug—3). Then, by the definition of the coloring ¢’ we have, S(ug_2) # S(ug—3)
since j + 1 mod d € S(uk_3) but j+ 1 & S(ug_2).

By contradiction, we are going to show that a vertex wug_» is distinguished
from its neighbor ug_1. Let S = {s + 1| s € S} and S, = {o(s)| s € S}.
Assume that S(ug_2) = S(ug—_1), i-e. S"U{0,d+ 1} = S, U{0,d}. Then we
have d+1 € S, and thus d—1 € Si-e. d € S’. Now, as §(G) > 2 by hypothesis,
there exists 7,0 < j <d—2such that j€S. If j =d—2then 1€ S, and

1€S, =218 =20eS=00)=2€5S, 25 =>...=2>d-1€85.

We obtain S = {0,1,...,d — 1}, which contradicts the hypothesis that
A(G)<d—-1.1f j < d— 2, the argument is similar.
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To show that a vertex ug_; is distinguished from its neighbor ug, we proceed
in a similar way. Assume that S(ug_1) = S(ug), i-e. that S, U {0,d} = SU
{d,d+ 1}. This implies 0 € S and when diseven 0 € S = ¢(0) =2 € S =
o2)=4€S=> ... =2od-4)=d-2€S=0(d-2)=1€S=0(l)=3¢
S=>...>0(d-3)=d-1€S.

Thus S ={0,1,...,d— 1}, a contradiction.

If d is odd the argument is similar.

In both cases, we have that ¢’ is an AVD-coloring of G’ with d+ 2 colors. O

Theorem 3 Let d > 2 be an integer and let G be a graph of marimum degree
A < d—1. If there exists an AVD-coloring of G with d colors, then x',(G X Py) <
d+ 2.

Proof : It is easy to see that the coloring ¢’ given in the proof of Theorem 2 for
even k also works for G x Py (k' € {k, k —1}) since vertices are distinguished in
each copy G;, and G x Py is obtained from G x Cy by deleting the edges (which
have the same color) of the perfect matching between copies Gy and Gg_1; and
if ¥’ is odd we also delete the copy Gk_1 with all incident edges. a

Corollary 1 For the hypercube Hy of dimension d > 3, we have

Xo(Ha) =d+1.

Proof : Figure 12 gives an AVD-coloring of Hsz with 4 colors. As Hy = Hg_1 X

Ps, then by Theorem 1 we obtain the result for d > 4. a
2
1
1 0 2 3
3
0

Figure 12: An AVD-coloring of Hs.

If we start with the AVD-coloring of the 2-dimensional toroidal mesh given
by Proposition 1 or Proposition 2 and if we apply inductively Theorem 2, we
obtain the following result for the toroidal mesh.

Corollary 2 For the k-dimensional toroidal mesh T'Mp,, m,,.. m,, with k > 2
and m; > 3, we have

X (T Moy g my) = 2k + 1.

11



Remark 1 Observe that X', (Csm) = 3. Therefore, in this case, one can start
the induction from only the cycle (instead of the 2-dimensional toroidal mesh).

Theorem 3 together with Lemma 1 give the following result for the mesh.

Corollary 3 For the k-dimensional mesh My, m,. . m,, with k > 2 and m; >
3, we have
Xa (Mmoo me) = 2k + L.

Finally one can give a more general result from the above Theorems.

Theorem 4 Let G = G1 x G X ... x Gy be a general mesh with k > 2, where
each G; 1is either a path or a cycle. Then

(i) xo(G) = A(G) iff Gi = Ps fori=1,2,...k;

(ii) X0 (G) = A(G)+ 2 iff k =2 and (G1,G3) € {(C5, Pa), (P2, Pa)};

(iii) x4 (G) = A(G) + 1 in all remaining cases.

Proof : We prove this theorem by induction on k using Theorems 1, 2 and 3.
The starting points of this induction is the Lemma 1, Propositions 1 and 2 and
the following facts.

(a) x5, (M3 3) = x'(Mz3) = 4 since in Mz 3 only vertices of distincts degrees
are adjacent.

(b) x4 (Csx Ps) = 5: The inegality x4 (C5 x P2) < 5 follows from the colorings
illustrated in Figure 13.

Figure 13: Two AVD-colorings of C5 x Ps.

Assume that x/(Cs x P2) < 4, 1.e. x5(C5 x P3) = 4 (the graph Cs x Py is
cubic). As || E(Cs x P2) | /4] = [15/4] = 3, there is a color set C' of cardinality
at most 3. Observe that the vertex independence number of C5 x Ps is 4 and
that a 4-vertex independent set is unique (up to an automorphism of Cs x Py). If
| C'|< 2, the vertex set W := V(C5 x P2)\V(C) is of cardinality at least 6, and
so there is an edge wywy with wy, ws € W. Then, however, w; and ws are not
distinguished by their color sets (the color of the edges of C' is missing at both
wy and ws), a contradiction. On the other hand, if | C' |= 3, then | W |= 4 and
W must be an independent set (otherwise we have a contradiction again).The
graph (Cs x Py)\W consists (see the observation above) of two components P;
and one copmponent Py; therefore, its vertex set cannot be covered by three
independent edges of C, a contradiction.

(¢) x4 (Cyy x P3) = 4 for any m # 5: This can be seen by induction on
m. Indeed, for m = 3,4, 8 an appropriate coloring of C,, x Ps is illustrated in
Figure 14, sharing the ”"block” B of the first three ”columns”.

12



Figure 14: AVD-colorings for Cy, x P2, m = 3,4,8.

A coloring of Cp43 X Ps is obtained from a coloring of Cy, x Py (containing
B) when replacing B by the ”block” illustrated in Figure 15 containing B as a
”subblock” on both its left and right end.

Figure 15: An AVD-coloring for Cy x Ps.

(d) x4 (P2 x Py) = x4, (C4) = 4 (according to [ZLWO02]).

(€) x5(C5 x P2 x P3) = 5: Use for the two vertex-disjoint copies of Cs x Ps
present in C5 X P, x Py as induced subgraphs the two colorings illustrated in
Figure 13.

Corresponding pairs of vertices joined by a ”vertical” edge of C5 x P have
color sets {a, @+ 1, @+ 3} (top) and {a+ 1, + 2, a+ 3} (bottom) in the copy
colored by the coloring on the left of Figure 13 with « increasing from 0 to 4
when going from the left to the right. Therefore, ”horizontal” edges between
corresponding vertices of the two copies of C5 x Ps can be colored by a + 2
(top) and a 4+ 4 (bottom). It is easy to check that an appropriate coloring of
Cs5 x Py x Py is obtained.

O
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