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Abstract

This paper studies edge- and total-colorings of graphs in which (all or only adjacent)
vertices are distinguished by their sets of colors. We provide bounds for the minimum number
of colors needed for such colorings for the Cartesian product of graphs along with exact
results for generalized hypercubes. We also present general bounds for the direct, strong and
lexicographic products.
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1 Introduction

All the graphs we deal with are simple, finite and with no component K2, where Kn stands for
the complete graph of order n. Let G = (V, E), be a graph with vertex set V and edge set E. An
edge between vertex x and vertex y is denoted by xy. Let ∆(G) be the maximum degree of the
graph.

A proper edge-coloring c is a mapping from E to N such that edges incident with the same
vertex receive distinct values (or colors). For any vertex x of G, let S(x) denote the set of the
colors of all edges incident to x (if necessary, we write Sc(x) to indicate which coloring is used).
A proper edge coloring is said to be

• vertex distinguishing (VD) if S(x) 6= S(y), ∀x, y ∈ V, x 6= y;

• adjacent vertex distinguishing (AVD) if S(x) 6= S(y), ∀xy ∈ E.

A total coloring of a graph G is a mapping from V ∪ E to N such that neighboring elements
receive distinct colors. For a total coloring, let S(x) be the set of the colors of all edges incident
to x plus the color of x: S(x) = {c(e)|e = xy} ∪ {c(x)}. A total adjacent vertex distinguishing
(TAVD) coloring is a total coloring satisfying S(x) 6= S(y),∀xy ∈ E.

The minimum number of colors among all VD-colorings, AVD-colorings and TAVD-colorings
respectively of a graph G will be called the VD-chromatic index, AVD-chromatic index and TAVD-
chromatic index denoted by χ′s(G), χ′a(G) and χ′′a(G) respectively.

The notation χ′(G), χ(G) and χ′′(G) is used to represent respectively the chromatic index,
the chromatic number and the total chromatic number of G, as usual. A coloring using the least
number of colors with respect to the given constraints will be called a minimal coloring.

The notion of VD-coloring was introduced in [BS97] and independently in [ČHS96] where
χ′s(G) is called the observability.

A lower bound for the VD-chromatic index is given by π(G) = min{k :
(
k
d

) ≥ nd for 1 ≤ d ≤
∆(G)} where nd is the number of vertices of degree d. Moreover, it is conjectured in [BS97] that
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χ′s(G) ≤ π(G)+1 for any graph G 6= K2. This conjecture has been solved for graphs of maximum
degree two [BBS02] and for graphs verifying ∆(G) ≥

√
2|V (G)|+ 4 and δ(G) ≥ 5 (where δ(G) is

the minimum degree of G) [BKLS04]. It was proved in [BHBLW99] that χ′s(G) ≤ |V (G)|+ 1 and
in [BHBLW01] the authors obtained χ′s(G) ≤ ∆(G) + 5 if δ(G) ≥ n

3 .
The study of AVD-colorings is more recent. In [BGLS07], the authors proved that χ′a(G) ≤ 5

for graphs of maximum degree 3 and χ′a(G) ≤ ∆(G) + 2 for bipartite graphs. In [BKT06],
the AVD-chromatic index of multidimensional meshes was determined. AVD-colorings are also
studied in [EHW06, GR06] under the name of neighbour-distinguishing edge colorings. The bound
χ′a(G) ≥ ∆(G) is trivial. Moreover if G contains two adjacent vertices of degree ∆(G) then
χ′a(G) ≥ ∆(G) + 1. The following conjecture was made in [ZLW02]:

Conjecture 1 ([ZLW02]) Let G 6= C5 be a graph of maximum degree ∆, then

∆ ≤ χ′a(G) ≤ ∆ + 2.

In relation with this conjecture and using a probabilistic argument, Hatami proved recently that
χ′a(G) ≤ ∆(G) + 300 provided that ∆(G) > 1020.

As remarked in [EHW06, ZCL+06], the AVD-chromatic index of some regular graphs is in
relation with their total chromatic number. More precisely, if G is a regular graph with χ′a(G) =
∆(G) + 1 then χ′′(G) = ∆(G) + 1 and the converse also holds. Therefore, some of the results of
the present paper about the AVD-chromatic index are also new results about the total chromatic
number while some other were already known earlier, see [KM03, ZŽ04].

Total adjacent vertex distinguishing colorings were considered in [ZCL+05, LWZW06] in which
the authors conjecture that χ′′a(G) ≤ ∆ + 3.

In this paper we shall consider VD, AVD and TAVD-colorings of products of graphs (see
definitions below), trying to derive bounds for χ′s, χ′a and χ′′a of the product of two graphs in
term of the value of the same parameter on the factors. In Section 2, we present general bounds
for the Cartesian product. As an application, we determine in Sections 3 and 4, the AVD and
TAVD-chromatic index of the generalized hypercube and present in Section 5 tight lower and upper
bounds for its VD-chromatic index. Section 6 provides bounds for VD, AVD and TAVD-chromatic
indices of direct, strong and lexicographic products.

We use the following notation from [IK00] for the standard graph products. Let G2H, G×H,
G £ H and G ◦ H be the Cartesian, direct (also called Krönecker or categorical), strong and
lexicographic product of G and H respectively. The vertex set of any of these products is V (G)×
V (H) and the edge sets are defined below:
E(G2H) = {(a, x)(b, y), ab ∈ E(G) and x = y or xy ∈ E(H) and a = b}.
E(G×H) = {(a, x)(b, y), ab ∈ E(G) and xy ∈ E(H)}.
E(G £ H) = E(G2H) ∪ E(G×H).
E(G ◦H) = {(a, x)(b, y), ab ∈ E(G) or a = b and xy ∈ E(H)}.

The d-dimensional generalized hypercube (also known as Hamming graph) Kd
n is the Cartesian

product of the complete graph Kn by itself d times: Kd
n = Kn2Kn2 . . . 2Kn. The hypercube Qd

is the graph Kd
2 .

2 General results for Cartesian products

We first present general results for the VD, AVD and TAVD-coloring of the Cartesian product of
graphs.

For AVD-colorings of the Cartesian product of a graph and a path or a cycle, the following
results were proved in [BKT06]:

Theorem 1 ([BKT06]) Let d ≥ 2 be an integer and let G be a graph of maximum degree ∆ ≤
d− 1. If there exists an AVD-coloring of G with d colors, then
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χ′a(G2P2) ≤ d + 1,

χ′a(G2Pk) ≤ d + 2, for k ≥ 3.

Theorem 2 ([BKT06]) Let d ≥ 2 be an integer and let G be a graph of maximum degree ∆ ≤
d− 1 and of minimum degree δ ≥ 2. If there exists an AVD-coloring of G with d colors, then

χ′a(G2Ck) ≤ d + 2.

The following theorem gives an upper bound on χ′s and χ′a for the Cartesian product of general
graphs.

Theorem 3 For any two graphs G and H different from K2, the following hold

χ′s(G2H) ≤ χ′s(G) + χ′s(H),

χ′a(G2H) ≤ χ′a(G) + χ′a(H).

Proof : Note that the product G′ = G2H consists of |V (G)| copies of H; and there is a perfect
matching between any two copies of H if the corresponding vertices of G are adjacent. By symme-
try, G′ also contains |V (H)| copies of G. Let cG and cH be two minimal VD- (AVD-)colorings of G
and H respectively such that the colors of cG are different from those used by cH . A VD-coloring
(AVD-coloring) c′ of G′ is obtained as follows: each copy of G in G′ is colored by cG and each
copy of H in G′ is colored by cH .

Indeed, let (a, x) be a vertex of G′. We have Sc′((a, x)) = ScG
(a) ∪ ScH

(x) and so, (a, x) is
distinguished from another (adjacent for AVD-coloring) vertex (b, y) because a is distinguished
from b in G or x is distinguished from y in H. 2

Notice that, despite the proof of the above theorem is quite simple, it allows to find the exact
value of the AVD-chromatic index for graphs G and H verifying χ′a(G) = ∆(G) and χ′a(H) = ∆(H)
(for instance, this is the case for trees with no two adjacent vertices of maximum degree [ZLW02]).

For the TAVD-chromatic index of the Cartesian product of two graphs, we have the following.

Theorem 4 Let G and H be two graphs different from K2 such that χ(H) ≤ χ′′a(G), then

χ′′a(G2H) ≤ χ′′a(G) + χ′a(H).

Proof : Let G′ = G2H, cG be a minimal TAVD-coloring of G and cH be a minimal AVD-coloring
of H such that the colors of cG are different from those used by cH . We also color the vertices
of H with the colors 0, 1, . . . , χ(H) − 1. Let α = χ′′a(G) and denote by σi the permutation on
0, 1, . . . , α − 1 defined by σi(k) = (k + i) mod α, for 0 ≤ k ≤ α − 1 and 0 ≤ i ≤ χ(H) − 1. By
extension, the total coloring c′G = σi(cG) is defined by c′G(x) = σi(cG(x)) ∀x ∈ V (G) ∪ E(G).

In order to obtain an AVD-coloring c′ of G′, we first use σi(cG) to color each copy Gj of G in
G′, where i is the color (given by the proper vertex coloring of H) of the vertex corresponding to
the copy Gj . Since χ(H) ≤ α, all permutations σi are pairwise different;

A TAVD-coloring c′ of G′ = G2H is obtained as follows: each copy Gj of G in G′ is totally
colored by σi(cG), where i is the color (given by the proper vertex coloring of H) of the vertex of
H corresponding to copy Gj and each copy of H in G′ is colored by cH .

Notice that since χ(H) ≤ α, all permutations σi are pairwise different thus the colors assigned
to vertices of G′ form a proper coloring. Moreover, as for the previous theorem, the fact that c′ is
a TAVD-coloring is easily shown since the colors on the vertices induce a proper vertex coloring
and adjacent vertices are distinguished either by their sets of colors from cG or by their sets of
colors from cH . 2

We now propose two better results in more specific cases for the AVD and TAVD-chromatic
indices.
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Theorem 5 Let G be a graph such that the degree of each vertex is relatively prime with χ′a(G),
and let H be a graph verifying χ(H) ≤ χ′a(G) then

χ′a(G2H) ≤ χ′a(G) + ∆(H).

Proof : Let G′ = G2H, cG be an AVD-coloring of G in χ′a(G) colors and γH be a proper edge
coloring of H in χ′(H) colors distinct from those used by cG. We also color the vertices of H with
the colors 0, 1, . . . , χ(H)− 1.

Similarly with the proof of the previous theorem, let α = χ′a(G) and denote by σi the permu-
tation on 0, 1, . . . , α−1 defined by σi(k) = (k + i) mod α, for 0 ≤ k ≤ α−1 and 0 ≤ i ≤ χ(H)−1.
Let also c′G = σi(cG) be the coloring defined by c′G(e) = σi(cG(e)) ∀e ∈ E(G).

In order to obtain an AVD-coloring c′ of G′, we first use σi(cG) to color each copy Gj of G in
G′, where i is the color (given by the proper vertex coloring of H) of the vertex corresponding to
the copy Gj .

Since χ(H) ≤ α, all permutations σi are pairwise different; moreover, if x is a vertex of G, and
xi (resp. xj) its corresponding vertex in Gi (resp. Gj), then the color set of xi in Gi is different
from the color set of xj in Gj . Then, we have two cases to consider:
Case 1: χ′(H) = ∆(H)

In this case, we use the proper coloring γH of H to color each copy of H in G′. Let (a, x) and
(b, y) be two adjacent vertices of G′. Without loss of generality, we have Sc′((a, x)) = ScG

(a) ∪
SγH

(x) and Sc′((b, y)) = σi(ScG
(b)) ∪ SγH

(y), for some i.
If x = y (i.e. (a, x) and (b, y) are in the same copy of G), then i = 0 and Sc′((a, x)) 6= Sc′((b, y))

since ScG(a) 6= ScG(b).
If x 6= y, as (a, x) and (b, y) are adjacent then so are x and y in H, thus x and y have

different colors and so i 6= 0. If SγH
(y) 6= SγH

(x), we have immediately Sc′((a, x)) 6= Sc′((b, y)).
If SγH

(y) = SγH
(x), we prove that ScG

(a) 6= σi(ScG
(a)). Indeed, by contradiction, let d be the

degree of a in G; if S = ScG(a) = σi(ScG(a)) = {s1, . . . , sd}, then we have modulo α = χ′a(G):
sj + i = sk ∈ S for each j, 1 ≤ j ≤ d. If we sum all equalities, we obtain d.i = 0 mod α. So, the
hypothesis that d and α are relatively prime gives σi = σ0 = Id which is a contradiction.

Therefore, when χ′(H) = ∆(H) we have χ′a(G2H) ≤ χ′a(G) + ∆(H).
Case 2: χ′(H) = ∆(H) + 1

Remark that in this case, for each vertex x of H, there exists (at least) one color j such that
j 6∈ SγH (x) (the missing color). In order to complete the coloring c′ of G′, we use the proper
edge-coloring γH to color each copy of H. Then, from the above remark, for each copy Gi of G
in G′, there is a color that is not used by any of the edges incident with any vertex of Gi. So we
modify the coloring σi(cG) of each copy Gi of G′ by changing the color zero by this missing color.
With a similar proof as for the first case, we can show that χ′a(G2H) ≤ χ′a(G) + ∆(H). 2

Theorem 6 Let G be a graph such that the degree of each vertex plus one is relatively prime with
χ′′a(G), and let H be a graph verifying χ(H) ≤ χ′′a(G) then

χ′′a(G2H) ≤ χ′′a(G) + ∆(H).

Proof : We modify the previous proof as follow: each AVD-coloring is replaced by a TAVD-
coloring; thus χ′a(G) is changed in χ′′a(G); each set of d colors {s1, s2, . . . , sd} is changed in a set
of d+1 colors {s1, s2, . . . , sd, sd+1} and the equality d · i = 0 mod α becomes (d+1) · i = 0 mod α.
2

Now, if α is taken to be the smallest prime number greater than χ′a(G) (respectively χ′′a(G))
then we obtain the two following corollaries.

Corollary 1 Let G be a graph and let p be the smallest prime number greater than or equal to
χ′a(G). If H is a graph verifying χ(H) ≤ p then

χ′a(G2H) ≤ p + ∆(H).
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Corollary 2 Let G be a graph and let p be the smallest prime number greater than or equal to
χ′′a(G). If H is a graph verifying χ(H) ≤ p then

χ′′a(G2H) ≤ p + ∆(H).

3 AVD-coloring of the generalized hypercube

In this section, we determine the AVD-chromatic index of the generalized hypercube Kd
n. We first

need to compute the AVD-chromatic index of K2p2K2.

Lemma 1 For p ≥ 2
χ′a(K2p2K2) = 2p + 1.

Proof : In order to construct the graph K2p2K2, we consider two copies K and K ′ of K2p. Let
V (K) = {x0, x1, . . . , x2p−1} and let V (K ′) = {x′0, x′1, . . . , x′2p−1}. Let c be the coloring of K2p

defined by:

c(xixj) = i + j mod (2p + 1) with 0 ≤ i < j ≤ 2p− 1.

In the following, each integer is considered modulo (2p + 1).
Remark that the equality 2i = i − 1 has no solution for i ∈ [0..2p − 1], and it is easy to see

that the color set S(xi) of each vertex xi is exactly S(xi) = {0, 1, . . . , 2p}\{2i, i− 1}.
Moreover, for i ∈ [0..2p − 1], i − 1 ∈ [0..2p]/{2p − 1} and 2i ∈ [0..2p]/{2p − 1}. So, the color

2p − 1 is the only one which appears in each set S(xi). Moreover, if we suppose i 6= j then the
two equalities 2j = i− 1 and 2i = j − 1 induce that 3(i + 1) = 0 which is impossible when 3 does
not divide 2p + 1. This proves that c is an AVD-coloring when 3 does not divide 2p + 1.

Now we define another coloring c′ for the second copy K ′ of K2p by setting:

c′(x′ix
′
j) = σ(c(xixj)) with 0 ≤ i, j ≤ 2p− 1,

where x′i is the corresponding vertex of xi in the second copy K ′ of K2p and the permutation σ is
defined by:

σ(i− 1) = 2i, with 1 ≤ i ≤ 2p.

An illustration of the colorings c and c′ is given in Appendix for p = 3.
As above, remark that if 3 does not divide 2p + 1 and if i 6= 2p − 1 then σ2(i) = i has no

solution. This proves that σ has no cycle of length two in its decomposition into a product of
disjoint cycles and c′ is also an AVD-coloring if 3 does not divide 2p + 1.

In this case (3 does not divide 2p + 1), we give the color 2i to each edge xix
′
i in K2p2K2. So,

in K2p2K2, the vertex xi has no incident edge of color i − 1, and the vertex x′i has no incident
edge of color σ(2i). Since σ has no cycle of length 2 in its decomposition then σ(2i) 6= i − 1.
Consequently, S(xi) 6= S(x′i) in K2p2K2.

So, we have obtained an AVD-coloring of K2p2K2 with 2p + 1 colors when 3 does not divide
2p + 1 (see Figure 1 for an AVD-coloring of K42K2).

In the case where 3 divides 2p+1, we modify the coloring c into an AVD-coloring d as follows:
Recall that σ has a unique cycle of length two in its disjoint cycles decomposition. Let (a, b)

be this cycle where a > b. We have necessarily a = 2 2p+1
3 − 2 and b = 2p+1

3 − 2 since σ2(i) = i
has only one solution. Remark also that a = 2(b + 1) = σ(b).

We define the coloring d by:
{

d(xa+1+kx2p−1−k) = a with 0 ≤ k ≤ 2p− 2− a,
d(xa+1+kx2p−k) = a− 1 with 1 ≤ k ≤ 2p− 2− a,

and in the other cases
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d(xixj) = c(xixj).

This coloring is also an AVD-coloring for K2p with 2p+1 colors. It is easy to see that the color
set S(xi) of each vertex xi is exactly S(xi) = {0, 1, . . . , 2p}\{2i, i−1} for i 6= a+1, i 6= a/2+p,
and S(xa+1) = {0, 1, . . . , 2p}\{b, a− 1}, S(xa/2+p) = {0, 1, . . . , 2p}\{a, a/2 + p− 1}

Recall that we had previously with the coloring c, S(xa+1) = {0, 1, . . . , 2p}\{b, a}, S(xa/2+p) =
{0, 1, . . . , 2p}\{a− 1, a/2 + p− 1}.

As above, excepted the color 2p− 1, all colors appear in at least one color set.
Now, we define another AVD-coloring d′ for the second copy of K2p by setting:

d′(x′ix
′
j) = σ′(d(xixj)) ∀ 0 ≤ i, j ≤ 2p− 1 with





σ′(i) = σ(i) ∀i 6= b and i 6= a/2 + p− 1
σ′(b) = a− 1
σ′(a/2 + p− 1) = a

An illustration of the colorings d and d′ is given in Appendix for p = 4.
By construction, σ′ has no cycle of length 2 in its decomposition into a product of disjoint

cycles. Indeed, we have ‘broken’ the cycle (a, b) of length 2 in σ.
In K2p2K2, for each i, the color sets S(xi) of xi and S(x′i) of x′i are distinct and verify

S(x′i) = σ′(S(xi)). Moreover, as for the previous case, for each i there exists a color which
appears neither in S(x′i) nor in S(xi). We give this color to the edge xix

′
i for each vertex xi of

K2p. Thus, we obtain an AVD-coloring for K2p2K2 in 2p + 1 colors when 3 divides 2p + 1.
Finally, as K2p2K2 is regular of degree 2p, we obtain χ′a(K2p2K2) ≥ 2p + 1 and thus

χ′a(K2p2K2) = 2p + 1.
2

Theorem 7 For any integers n ≥ 2 and d ≥ 2,

χ′a(Kd
n) = d(n− 1) + 1.

Proof : It is known that χ′a(Kn) = χ′s(Kn) = n + 1 − ε(n), where ε(n) = 1 for odd n and 0 for
even n.

When n is odd, n = 2p+1 for some p, we proceed by induction on d. The result is true for d = 1.
Assume that χ′a(Kd−1

2p+1) = 2p(d− 1) + 1, thus χ′a(Kd−1
2p+1) and ∆(Kd−1

2p+1) = 2p(d− 1) are relatively
prime and using Theorem 5 with G = Kd−1

2p+1 and H = K2p+1, we have that χ′a(Kd
2p+1) = 2pd + 1.

When n = 2p is even, we obtain d(2p − 1) + 1 ≤ χ′a(Kd
2p) ≤ d(2p − 1) + 2. We show that

χ′a(Kd
2p) = 2p + 1 by induction on d.

When d = 2, by Lemma 1, there axists an AVD-coloring of K2p2K2 with 2p + 1 colors, and
applying Theorem 5 with G = K2p2K2 and H = Kp, we conclude that χ′a((K2p2K2)2Kp) = 3p.
Now, we add p − 1 perfect matchings to (K2p2K2)2Kp in order to obtain K2

2p, all the edges of
each perfect matching being colored with a new color. We therefore obtain χ′a(K2

2p) = 4p− 1.
We suppose by induction that χ′a(Kd

2p) = d(2p−1)+1 for d ≥ 2 and prove that χ′a(Kd+1
2p ) = (d+

1)(2p−1)+1. As Kd+1
2p = Kd

2p2K2p, Kd+1
2p contains 2p copies of Kd

2p. Let {xj
i , 0 ≤ i ≤ (2p)d−1}

be the set of vertices of the jth copy (1 ≤ j ≤ 2p). So, we color each copy with the different AVD-
colorings cj , 1 ≤ j ≤ 2p such that: c1 is an AVD-coloring of Kd

2p in d(2p−1)+1 colors, and if j ≥ 2,
we define cj(x

j
ix

j
k) = c1(x

j
i+j−1x

j
k+j−1) where the subscripts are modulo (2p)d. In order to obtain

Kd+1
2p , we add 2p− 1 perfect matchings between the 2p copies of Kd

2p, all the edges of each perfect
matching being colored with a new color. So, χ′a(Kd+1

2p ) = d(2p−1)+1+(2p−1) = (d+1)(2p−1)+1.
2
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Figure 1: An AVD-coloring for K42K2 with 5 colors

4 TAVD-coloring of the generalized hypercube

In this section, we determine the TAVD-chromatic index of the generalized hypercube Kd
n. In

order to do that, we first need to compute the TAVD-chromatic index of K2
2p+1.

Lemma 2 For p ≥ 2
χ′′a(K2

2p+1) = 4p + 2.

Proof : Let V (K2
2p+1) = {xj

i |0 ≤ i, j ≤ 2p} and E(K2
2p+1) = {xj

ix
j′
i |0 ≤ i, j, j′ ≤ 2p, j 6=

j′} ∪ {xj
ix

j
i′ |0 ≤ i, i′, j ≤ 2p, i 6= i′}. Define a total coloring c of K2

2p+1 by




c(xj
i ) = 2i + j mod (4p + 2),

c(xj
ix

j
i′) = i + i′ + j mod (4p + 2),

c(xj
ix

j′
i ) = i + j + j′ + 2p + 1 mod (4p + 2).

We now show that c is a TAVD-coloring. By the above definition, S(xj
i ) = {0, . . . 4p+1}\{i+

j +2p+1 mod (4p + 2)}. Hence, for i′ 6= i and j′ 6= j, we have S(xj
i ) 6= S(xj

i′) and S(xj
i ) 6= S(xj′

i ).
2

Theorem 8 For any integers n ≥ 2 and d ≥ 2,

χ′′a(Kd
n) = (n− 1)d + 2.

Proof : It is known [ZCL+05] that χ′′a(Kn) = χ′′s (Kn) = n + 2 − ε(n), where ε(n) = 0 for odd n
and 1 for even n.

We proceed by induction on d, by considering two cases depending on the parity of n.
When n is even, n = 2p for some p, the result is true for d = 1. Assume that χ′′a(Kd−1

2p ) =
(2p − 1)(d − 1) + 2, thus χ′′a(Kd−1

2p ) and ∆(Kd−1
2p ) + 1 = (2p − 1)(d − 1) + 1 are relatively prime

and using Theorem 6 with G = Kd−1
2p and H = K2p, we have that χ′′a(Kd

2p) = (2p− 1)d + 2.
When n = 2p + 1 is odd, the result is true for d = 2 by Lemma 2. Assume that χ′′a(Kd

2p+1) =
2pd + 2. Thus χ′′a(Kd−1

2p+1) and ∆(Kd−1
2p+1) + 1 = 2pd + 1 are relatively prime and using Theorem 6

with G = Kd−1
2p+1 and H = K2p+1, we have that χ′′a(Kd

2p+1) = 2pd + 2.
Therefore, we have proved that χ′′a(Kd

n) = (n− 1)d + 2.
2
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5 VD-coloring of the generalized hypercube

Finding a minimal VD-coloring for the product of a graph by K2 seems to be difficult, nevertheless
we present two simple upper bounds.

Theorem 9 For any graph G, χ′s(G2K2) ≤ 2χ′s(G) + 1.

Proof : A VD-coloring of G2K2 can be simply obtained by coloring the edges of each of the two
copies of G with two VD-colorings using χ′s(G) colors distinct from each other and by coloring the
edges between the two copies by a new color. 2

Given a graph G with an edge-coloring c, we say that a color j touches a vertex x if j ∈ Sc(x).

Theorem 10 If there exists a VD-coloring of G with d colors such that one color touches each
vertex, then there exists a VD-coloring of G2K2 with d + 2 colors such that one of them touches
each vertex.

Proof : Assume that c is a VD-coloring of G with colors {0, 1, . . . , d − 1} such that the color 0
touches each vertex of G. Color each of the two copies of G in G2K2 with the coloring c and
replace the color 0 by the color d in the first copy and by the color d + 1 in the second copy.
Now, give the color 0 to the edges of the perfect matching between the two copies. The coloring
obtained is clearly VD since the coloring in each copy is VD and a vertex of a copy is distinguished
with a vertex of the other copy since different colors touch them. Moreover, the color 0 touches
each vertex of G2K2. 2

This theorem allows to obtain the known fact that χ′s(Qn) ≤ 2n (see [ČHS96]). Notice that
the authors of [ČHS96] have given the asymptotic value of χ′s(Qn) but finding the exact value still
remains an open problem.

Theorem 11 For any integers n ≥ 3 and d,

d(n− 1) ≤ χ′s(K
d
n) ≤ d(2bn

2
c+ 1).

Proof : Obviously, χ′s(K
d
n) ≥ ∆(Kd

n) + 1 = d(n − 1) + 1. The relation is true for d = 1. By
recurrence on d and with Theorem 3, when n = 2p + 1, χ′s(K

d
2p+1) ≤ χ′s(K

d−1
2p+1) + χ′s(K2p+1) ≤

d(2p + 1).
The case n = 2p is similar.

2

Theorem 12 For any integers p ≥ 1 and d ≥ 1,

• if d ≤ ln(2p + 1) + 1 then χ′s(K
d
2p+1) = d(2p + 1),

• if d ≤ ln(2p) then χ′s(K
d
2p) ≥ 2dp− 1.

Proof :
For the first assertion, in order to see if d(2p + 1) colors are sufficient to obtain a VD-coloring,

we compare
(
(2p+1)d−1

2dp

)
=

(
(2p+1)d−1

d−1

)
with (2p + 1)d. Let us define:

A =

(
(2p+1)d−1

d−1

)

(2p + 1)d−1
=

((2p + 1)d− 1)((2p + 1)d− 2) . . . (2dp + 1)
(d− 1)(2p + 1)(d− 2)(2p + 1) . . . 1(2p + 1)

.

Thus ln(A) =
d−1∑
`=1

ln( 2dp+`
`(2p+1) ) =

d−1∑
`=1

ln( 2dp+`
2p+1 )−

d−1∑
`=1

ln(`).

With the well-known Darboux sums inequalities, we obtain
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ln(A) ≤
d∫

`=1

ln( 2dp+`
2p+1 )d`−

d−1∫
`=1

ln(`)d` and (with Maple),

≤ (1 + 2dp)ln(1 + d−1
2dp+1 ) + (d− 1)ln( d

d−1 )− 1 and (with ln(1 + x) < x for x 6= 0),
< d− 1.

So, if d ≤ ln(2p+1)+1 then ln(A) < ln(2p+1) and A < 2p+1. Thus when d ≤ ln(2p+1)+1,
χ′s(K

d
2p+1) ≥ d(2p + 1). With the previous theorem, we obtain the result.

The proof of the second point is similar. 2

6 Other products

We first present a simple fact about TAVD-colorings that will be useful.

Fact 1 For any graph G,
χ′′a(G) ≤ χ′(G) + χ(G).

Actually, coloring separately the edges and the vertices of the graph gives a proper total coloring
and the colors assigned to vertices of G distinguish adjacent vertices.

As a consequence, the TAVD-chromatic index of a bipartite graph B with two adjacent vertices
of maximum degree is ∆(B) + 2 since ∆(B) + 2 colors are necessary to color and distinguish two
adjacent vertices of degree ∆(B).

6.1 Direct product

Theorem 13 For any two graphs G and H different from K2, the following hold

χ′s(G×H) ≤ χ′s(G)χ′s(H),

χ′a(G×H) ≤ min{χ′(G)χ′a(H), χ′a(G)χ′(H)},
χ′′a(G×H) ≤ min{χ′(G)χ′′a(H), χ′′a(G)χ′(H)}.

Proof : Let G′ = G × H. For the first inequality, given two minimal VD-colorings cG and cH

of G and H respectively, color each edge (a, x)(b, y) of G′ with the color (cG(ab), cH(xy)). The
color set of a vertex (a, x) of G′ is then S((a, x)) = ScG

(a)× ScH
(x). Hence, for any two distinct

vertices (a, x) and (b, y) of G′, we have S((a, x)) 6= S((b, y)) since either ScG(a) 6= ScG(b) or
ScH (x) 6= ScH (y), or both.

For the second inequality, without loss of generality, assume that min{χ′(G)χ′a(H), χ′a(G)χ′(H)} =
χ′a(G)χ′(H). Let cG be an AVD-coloring of G with colors 0, 1, . . . , α − 1, where α = χ′a(G). Let
γH be a proper edge coloring of H in χ′(H) colors.

An AVD-coloring c′ of G′ is obtained by setting for each ab ∈ E(G), xy ∈ E(H):

c′((a, x)(b, y)) = (cG(ab), γH(xy)).

The fact that c′ is AVD is easily seen: we have Sc′((a, x)) = ScG(a)× SγH (x). Hence, for any
two adjacent vertices (a, x) and (b, y) of G′, we have S((a, x)) 6= S((b, y)) since ScG

(a) 6= ScG
(b)

(a and b are adjacent vertices of G).
The third inequality can be shown in a same way, replacing χ′a by χ′′a, AVD by TAVD and for

each vertex (a, x) of G′, setting c′((a, x)) = (cG(a), 0). 2

Theorem 14 For any graph G, the following holds

χ′a(G×K2) ≤ χ′a(G).

Moreover, equality holds if G is bipartite, or if G is regular and χ′a(G) = ∆(G) + 1, or if χ′a(G) =
∆(G).
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Proof : An AVD-coloring c′ of G×K2 is obtained by setting for ab ∈ E(G), xy ∈ E(K2):

c′((a, x)(b, y)) = cG(ab).

In other words, we give the color of the edge ab to the edge (a, x)(b, y). So, if ScG
(a) =

{a1, a2, . . . , ak} then we have also Sc′((a, x)) = {a1, a2, . . . , ak} and it is clear that c′ is an AVD-
coloring of G×K2. In the case where G is bipartite, then G×K2 consists in two disconnected copies
of G and so χ′a(G×K2) = χ′a(G). In the case where G is regular of degree ∆ and χ′a(G) = ∆ + 1,
then G×K2 is also regular and we have χ′a(G×K2) ≥ ∆ + 1 and χ′a(G×K2) ≤ χ′a(G) = ∆ + 1.
So, χ′a(G×K2) = ∆ + 1. In the case where χ′a(G) = ∆, then clearly, χ′a(G×K2) = ∆.

2

Theorem 15 For any m ≥ 3, n ≥ 3,

χ′a(Pm × Pn) =
{

4 if m = n = 3
5 otherwise.

Proof : If m = n = 3, then Pm × Pn is the disjoint union of a 4-cycle and a 4-star. Hence four
colors suffice to AVD-color P3 × P3.

If m ≥ 3, n ≥ 3 and m + n > 6 then, in [BKT06], we proved that χ′a(Pm2Pn) = 5 and the
coloring used is such that the four edges of each 4-length cycle in Pm2Pn have pairwise different
colors. Now, it is easily seen that Pm×Pn consists in two connected isomorphic components with
two adjacent vertices of degree 4 (thus χ′a(Pm × Pn) ≥ 5) that are induced subgraphs of some
grid Pm′2Pn′ (see Figure 2). Thus, two adjacent vertices of degree 4 in Pm × Pn have obviously
different sets of colors. Moreover, two adjacent vertices of degree 2 have different sets of colors
since they belong to a cycle of length 4 in Pm′2Pn′ .

2
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Figure 2: The product P8 × P4 with a component (in bold) included in P62P5.

6.2 Strong product

Theorem 16 For any two graphs G and H different from K2, the following hold

χ′s(G £ H) ≤ min{χ′s(G2H) + χ′(G×H), χ′(G2H) + χ′s(G×H)},
χ′a(G £ H) ≤ χ′a(G2H) + χ′a(G×H),

χ′′a(G £ H) ≤ χ′(G £ H) + χ(G)χ(H).
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Proof : Remember that the edge set of G£H is the union of the edge set of G2H and of G×H.
To obtain a VD-coloring of G £ H, VD-color the edges of G2H in χ′s(G2H) colors and properly
color the edges of G × H in χ′(G × H) new colors. Then the coloring is clearly proper and the
vertices are distinguished by the VD-coloring of G2H. The same goes when exchanging the roles
of G and H. We then obtain χ′s(G £ H) ≤ min{χ′s(G2H) + χ′(G×H), χ′(G2H) + χ′s(G×H)}.

For the AVD-coloring of G £ H, AVD-color the edges of G2H in χ′a(G2H) colors and AVD-
color the edges of G×H in χ′a(G×H) new colors. This coloring is clearly proper and two adjacent
vertices are distinguished either by the colors of the edges of G2H or by the colors of the edges
of G×H.

The third inequality is a direct consequence of Claim 1 since χ(G£H) ≤ χ(G)χ(H) (see [IK00],
page 246). 2

6.3 Lexicographic product

Theorem 17 For any two graphs G and H different from K2, the following hold

χ′s(G ◦H) ≤ χ′s(G) + χ′s(H) + (|V (H)| − 1)χ′(G),

χ′a(G ◦H) ≤ χ′a(G) + χ′a(H) + (|V (H)| − 1)χ′(G),

χ′′a(G ◦H) ≤ χ′(G ◦H) + χ(G)χ(H).

Proof : Assume G is of order n ≥ 3 and H is of order m ≥ 3. The graph G ◦ H consists in
n copies of H, two copies being linked by a complete bipartite graph Km,m if the corresponding
vertices of G are adjacent. Thus, the edges between two copies of H can be decomposed into m
perfect matchings. To obtain a VD-coloring of G ◦H:

• VD-color the edges of each copy of H with χ′s(H) colors,

• for any edge e of G, color one of the m perfect matchings between the two copies of H
corresponding to e with the color of e in a VD-coloring of G in χ′s(G) new colors,

• properly color the edges of the remaining perfect matchings with (m− 1)χ′(G) new colors.

For the AVD-coloring, the proof is the same as above, replacing VD by AVD and χ′s by χ′a.
For the TAVD-coloring, as for the strong product, the third inequality follows from Claim 1

since χ(G ◦H) ≤ χ(G)χ(H) ([IK00], page 246). 2

7 Concluding remarks

We have obtained bounds for the VD, AVD and TAVD-chromatic indices of the Cartesian prod-
uct of two graphs and we have shown that some of these bounds are optimal since they allow
to determine the AVD and TAVD-chromatic indices of generalized hypercubes. General bounds
for the direct, strong and lexicographic products have also been determined. Notice that, de-
spite Theorems 3, 13, 16, 17 have quite simple proofs, they give the exact value of the adjacent
vertex distinguishing chromatic index if the factors G and H are such that χ′a(G) = ∆(G) and
χ′a(H) = ∆(H) (for instance, this is the case for trees with no two adjacent vertices of maxi-
mum degree [ZLW02]). However, the bounds we obtained for the TAVD-chromatic index of the
direct, strong and lexicographic products do not seem to be very tight. It could be interesting to
investigate this more in details.
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Appendix

c(K6) =




x0 x1 x2 x3 x4 x5 Missing colors
x0 1 2 3 4 5 0, 6
x1 1 3 4 5 6 0, 2
x2 2 3 5 6 0 1, 4
x3 3 4 5 0 1 2, 6
x4 4 5 6 0 2 1, 3
x5 5 6 0 1 2 3, 4




c′(K ′
6) =




x′0 x′1 x′2 x′3 x′4 x′5 Missing colors
x′0 4 6 1 3 5 0, 2
x′1 4 1 3 5 0 2, 6
x′2 6 1 5 0 2 3, 4
x′3 1 3 5 2 4 0, 6
x′4 3 5 0 2 6 1, 4
x′5 5 0 2 4 6 1, 3




d(K8) =




x0 x1 x2 x3 x4 x5 x6 x7 Missing colors
x0 1 2 3 4 5 6 7 0, 8
x1 1 3 4 5 6 7 8 0, 2
x2 2 3 5 6 7 8 0 1, 4
x3 3 4 5 7 8 0 1 2, 6
x4 4 5 6 7 0 1 2 3, 8
x5 5 6 7 8 0 2 4 1, 3
x6 6 7 8 0 1 2 3 4, 5
x7 7 8 0 1 2 4 3 5, 6




d′(K ′
8) =




x′0 x′1 x′2 x′3 x′4 x′5 x′6 x′7 Missing colors
x′0 3 6 8 1 4 5 7 0, 2
x′1 3 8 1 4 5 7 0 2, 6
x′2 6 8 4 5 7 0 2 1, 3
x′3 8 1 4 7 0 2 3 5, 6
x′4 1 4 5 7 2 3 6 0, 8
x′5 4 5 7 0 2 6 1 3, 8
x′6 5 7 0 2 3 6 8 1, 4
x′7 7 0 2 3 6 1 8 4, 5
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