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Abstract

This paper studies proper k-tuple edge-colorings of graphs that distinguish neigh-
boring vertices by their sets of colors. Minimum number of colors for such colorings
are determined for cycles, complete graphs and complete bipartite graphs. A vari-
ation in which the color sets assigned to edges have to form cyclic intervals is also
studied and similar results are given.
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1 Introduction

The graphs considered in this paper are undirected and without loops. For a
graph G = (V, E) with vertex set V and edge set E, let ∆(G) (or simply ∆
for short) be its maximum degree.

A proper k-tuple edge-coloring φ of a graph G is a mapping from E to N
k such

that edges incident with the same vertex receive disjoint color sets. The k-
tuple version of the vertex-coloring problem was first considered by Stahl [12].
For any vertex x of G, let Sφ(x) denote the union of the color sets of all
edges incident to x (we will omit the subscript φ if no confusion is possible).
A proper k-tuple edge coloring is said to be neighbor distinguishing (ND) if
S(x) 6= S(y) ∀xy ∈ E. The least number of colors needed for a k-tuple ND-
coloring of a graph G will be called its k-tuple ND-chromatic index and will
be denoted by χ′

a(G; k). Notice that a graph with an isolated edge does not
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admit a k-tuple ND-coloring for any k. Consequently, even if not specified, all
graphs we deal with are assumed to have no single edge as a component.

The study of 1-tuple ND-colorings of graphs was initiated in [16] under the
name of adjacent strong edge-colorings and with the notation χ′

a(G) = χ′

a(G; 1).
In [1], Balister et al. proved that χ′

a(G) ≤ 5 for graphs of maximum degree
3 and χ′

a(G) ≤ ∆ + 2 for bipartite graphs. In [2], the 1-tuple ND-chromatic
index of multidimensional meshes was determined.

The bound χ′

a(G) ≥ ∆ is trivial. Moreover if G contains two adjacent vertices
of degree ∆ then χ′

a(G) ≥ ∆ + 1. The following conjecture was made in [16]:

Conjecture 1 ([16]) Let G 6= C5 be a connected graph of maximum degree

∆, then

∆ ≤ χ′

a(G) ≤ ∆ + 2.

In relation with this conjecture, Hatami [7] has shown that χ′

a(G) ≤ ∆ + 300
for any graph G of maximum degree ∆ > 1020. Greenhill and Ruciński [5]
prove the conjecture for almost all 4-regular graphs. Edwards et al. [4] showed
that ∆+1 colors are sufficient for planar bipartite graphs of maximum degree
∆ ≥ 12.

Some extensions and variations were also considered: total ND-colorings [15,3],
ND-colorings from lists [8] and non proper ND-colorings [6]. For other related
distinguishing coloring parameters, see [13].

Not surprisly, Conjecture 1 cannot be extended to k-tuple edge-colorings, in
the light of Shannon’s well-known chromatic index theorem. Hence, the aim
of this paper is to study k-tuple ND-colorings of graphs. We also study a
variation of k-tuple ND-coloring where the set of colors assigned to each edge
has to form a cyclic interval: a k-tuple ND-coloring φ of a graph G with colors
from {0, . . . , N − 1} is said to be a cyclic k-tuple ND-coloring if the color
set φ(xy) of the edge between x and y is an interval modulo N (of size k)
which will be denoted by φ(xy) = [i, i + k − 1]N for some i, 0 ≤ i ≤ N − 1,
where [a, b]N = [a mod N, (a + 1) mod N, . . . , b mod N ]. The least number
of colors needed for a cyclic k-tuple ND-coloring of a graph G will be called
its cyclic k-tuple ND-chromatic index and will be denoted by χ′

ac(G; k).

Observe that for any graph G and any k ≥ 1, χ′

ac(G; k) ≥ χ′

a(G; k), and, as
we will show later, there exist several classes of graphs for which χ′

ac(G; k) >
χ′

a(G; k).

Without the ND constraint, k-tuple edge-colorings lead to the definition of the
fractional chromatic index χ′

f (G) which can be defined by χ′

f (G) = infk
χ′(G;k)

k
=

mink
χ′(G;k)

k
[14]. In the same vein, cyclic k-tuple edge-colorings of graphs lead

to the definition of the circular chromatic index [10,11]: the circular chromatic
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index of G is the ratio minimum N/k for which there exists an edge coloring
of G by cyclic (or circular) intervals modulo N of size k. Notice that, as can be
seen in the remainder of the paper, there are graphs G for which χ′

a(G; k)/k is
a strictly decreasing function of k, thus the infimum is never reached (which
is not the case without the ND constraint).

The paper is organized as follows: Section 2 presents some general simple
results about the k-tuple ND- and cyclic k-tuple ND-chromatic indices of
graphs. In Section 3, we determine the k-tuple ND- and cyclic k-tuple ND-
chromatic indices of paths and cycles. In Section 4, k-tuple ND- and cyclic
k-tuple ND-chromatic indices of complete and complete bipartite graphs are
determined. Section 5 concludes the paper by presenting a conjecture about
the ND-chromatic index of a multigraph.

2 General observations

We begin by some simple observations that will be used throughout the rest
of the paper.

Let IN
j,k be the cyclic interval [j, j + k − 1]N . If N and k are clear from the

context, we will permit ourselves to write Ij instead of IN
j,k. Let also IN

k =
{IN

j,k, 0 ≤ j ≤ N − 1}.

Observation 1 For any graph G,

χ′

ac(G; k) ≤ kχ′

a(G).

Proof : Starting from an ND-coloring of G with χ′

a(G) colors, a cyclic k-tuple
ND-coloring of G with N = kχ′

a(G) colors can be obtained simply by replacing
each color i by the color interval Iki. 2

Observation 2 For any graph G and any integers k and k′ with 1 ≤ k′ < k,

χ′

a(G; k) ≤ χ′

a(G; k′) + χ′(G; k − k′).

In particular, χ′

a(G; k) ≤ χ′

a(G) + (k − 1)χ′(G).

Remember that a graph is class 1 if χ′(G) = ∆(G) and class 2 if χ′(G) =
∆(G) + 1. Thus, derived from the above observation, we have the following:

Observation 3 For any class 1 graph G,

χ′

a(G; k) ≤ χ′

a(G) + (k − 1)∆(G).
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As a corollary, we easily obtain the next proposition:

Proposition 2 For a class 1 graph G,

• if G has two adjacent vertices of maximum degree and if χ′

a(G) = ∆(G)+1,
then χ′

a(G; k) = k∆(G) + 1;
• if χ′

a(G) = ∆(G), then χ′

a(G; k) = k∆(G).

For instance, the cycle C6p is class 1 and χ′

a(C6p) = 3, thus χ′

a(C6p; k) = 2k.

3 The path Pn and cycle Cn

Let Pn be the path of order n, with vertex set V = {0, 1, . . . , n− 1} and edge
set E = {ei = i(i + 1), 0 ≤ i ≤ n − 2} and let Cn be the cycle of order n with
vertex set V and edge set E = {ei = i(i + 1) mod n, 0 ≤ i ≤ n − 1}.

For the path, we easily obtain the following theorem:

Theorem 3 For n ≥ 4 and k ≥ 1, χ′

ac(Pn; k) = χ′

a(Pn; k) = 2k + 1.

Proof : The theorem directly follows from Proposition 2 since Pn is class
1 and χ′

a(Pn) = 3. However, a cyclic k-tuple ND-coloring φ can be simply
constructed by setting φ(ei) = IN

ki,k for 0 ≤ i ≤ n − 1 and N = 2k + 1. 2

In order to determine the cyclic k-tuple ND-chromatic index of the cycle,
we need some notation. Let the gap gap(IN

a,k, I
N
b,k) be the number of integers

between the last element of IN
a,k and the first of IN

b,k considered modulo N , i.e.
gap(IN

a,k, I
N
b,k) = b−a−k mod N . Notice that this definition is not symmetrical

since there exist many cases such that gap(IN
a,k, I

N
b,k) 6= gap(IN

b,k, I
N
a,k).

Any cyclic k-tuple coloring of the cycle Cn can naturally be associated with the
sequence of gaps between intervals of consecutive edges. For instance, for the
cycle C9 with k = 4 and N = 10 colors, the sequence S = (2, 1, 0, 0, 0, 0, 0, 0, 1)
corresponds with intervals (I0, I6, I1, I5, I9, I3, I7, I1, I5) along the edges (e0, e1, . . . , en−1)
of the cycle.

Notice also that in order for a sequence S = (s1, s2, . . . , sn) of gaps to corre-
spond with a cyclic k-tuple coloring of the cycle Cn with N colors, we must
have

∑n
i=1 si +kn ≡ 0 mod N (because the gap between the last interval and

the first one is completely determined by the n − 1 other gaps).

Lemma 4 For k ≥ 1 and n ≥ 4 even, χ′

ac(Cn; k) ≤ 2k + 2.

Proof : We define a cyclic k-tuple ND-coloring of Cn with N = 2k + 2 colors
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by giving its sequence of gaps S:

S = (2, 2, . . . , 2
︸ ︷︷ ︸

n

2
−1

, 1, 0, 0, . . . , 0
︸ ︷︷ ︸

n

2
−1

, 1).

The associated coloring is clearly proper since S does not contain any gap of
size at least three. The coloring is also ND since the sequence does not contain
any subsequence of length two of the form 0, 2; 2, 0 or 1, 1 that are the only
cases which prevent the coloring from being ND when N = 2k + 2. 2

Lemma 5 For k ≥ 2 and n odd, n ≥ 2k + 3, χ′

ac(Cn; k) ≤ 2k + 2.

Proof : We define a cyclic k-tuple ND-coloring of Cn with 2k + 2 colors by
giving its sequence of gaps S:

S =







(2, 2, . . . , 2
︸ ︷︷ ︸

n−k−3

2

, 1, 0, 0, 0, . . . , 0, 1) if k is even,

(2, 2, . . . , 2
︸ ︷︷ ︸

n−k−4

2

, 1, 0, 1, 0, 0, . . . , 0, 1) otherwise.

As above, it can be shown that the associated coloring is ND. In addition,
we just need to verify that n−k−3

2
≥ 1 for k even, and n−k−4

2
≥ 1 otherwise.

Indeed, n − k − 3 ≥ 2k + 3 − k − 3 ≥ k ≥ 2 when k is even; and n − k − 4 ≥
2k + 3 − k − 4 = k − 1 ≥ 2 for k odd and k ≥ 2. 2

Theorem 6 For n ≥ 3 and k ≥ 1,

χ′

ac(Cn; k) =







5 if (n, k) = (5, 1),
2k + ⌈ 2k

n−1
⌉ if n < 2k + 1 is odd,

2k + 1 if n ≡ 0 mod (2k + 1),
2k + 2 otherwise .

Proof : The case (n, k) = (5, 1) is trivial.

We shall now show that χ′

ac(Cn; k) = 2k+1 if and only if n ≡ 0 mod (2k + 1).

Let N = 2k +1 and n ≡ 0 mod (2k + 1). The k-tuple coloring φ of Cn defined
by φ(ej) = Ikj, 0 ≤ j ≤ n−1 or equivalently by the gap sequence S = (0, . . . , 0)
is clearly proper and ND since φ(en−1) = I2k2 = Ik+1 6= φ(e1) = Ik. This
coloring is exhibited in Figure 1 for (n, k) = (7, 3).

On the other hand, it is easily seen that any cyclic k-tuple ND-coloring of
Cn with 2k + 1 colors is isomorphic to φ up to a renumbering of the colors
since in that case the interval of colors that can be assigned to an edge ei
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0 1 2 43 5 6

I0 e0

I3

I6

Fig. 1. A cyclic 3-tuple ND-coloring of C7 with N = 7 colors.

is completely determined by the intervals assigned to its two preceding edges
ei−1 and ei−2. Thus a cyclic k-tuple ND-coloring of Cn with 2k+1 colors exists
only if n ≡ 0 mod (2k + 1).

We now show that if n < 2k + 1 and n is odd then χ′

ac(Cn; k) = 2k + ⌈ 2k
n−1

⌉.

It is sufficient to show that χ′

ac(Cn; k) ≤ 2k + ⌈ 2k
n−1

⌉ since χ′

ac(C2p+1; k) ≥

χ′(C2p+1; k) ≥ k 2p+1
p

= k(2 + 1
p
) (because at most p edges of C2p+1 can be

given the same color).

Let n = 2p + 1, with p ≤ k − 1 and let s = p⌈k
p
⌉ − k.

Consider the k-tuple coloring φ of C2p+1 with N = 2k + ⌈ 2k
n−1

⌉ colors defined
by the following sequence of gaps:

S = (1, 0, 1, 0, . . . , 1, 0
︸ ︷︷ ︸

2s

, 0, 0, . . . , 0, 0).

Remark that 0 ≤ s ≤ pk+p

p
− k = p.

As S does not contain (a) any gap of size at least 2, or (b) any subsequence of
the form 1, 1, and since the sum of gaps plus nk equals 0 modulo 2k + ⌈ 2k

n−1
⌉,

then φ is a k-tuple ND-coloring of Cn with 2k + ⌈ 2k
n−1

⌉ colors. An illustration
is given in Figure 2 for (n, k) = (9, 10) (thus s = 2).

We end the proof by showing that χ′

ac(Cn; k) = 2k+2 for the remaining cases.
By the above, we know that χ′

ac(Cn; k) > 2k + 1 if n 6≡ 0 mod (2k + 1). Thus,
by virtue of Lemma 4 and Lemma 5, we have that χ′

ac(Cn; k) ≤ 2k + 2 for
these cases, which completes the proof. 2

Theorem 7 For n ≥ 3 and k ≥ 1,
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0 2 4 6 222018161412108

Fig. 2. A cyclic 10-tuple ND-coloring of C9 with N = 23 colors and is associated
sequence of gaps (1, 0, 1, 0, 0, 0, 0, 0, 0).

0...k−1

k+2...2k+1 k+1...2k

1...k

0,5

0,1

2,3

0,4

1,2

1,3

2,4

Fig. 3. The cases n = 4 and (n, k) = (7, 2).

χ′

a(Cn; k) =







5 if (n, k) = (5, 1),
2k + ⌈ 2k

n−1
⌉ if n < 2k + 1 is odd,

2k + 2 if n = 4 or (n, k) = (7, 2),
2k + 1 otherwise.

Proof : Recall that for any graph G and any k ≥ 1, χ′

a(G; k) ≤ χ′

ac(G; k).
Then, with Theorem 6, it remains to treat the following cases:

• n = 4 or (n, k) = (7, 2). It is easily seen that a k-tuple ND-coloring with
2k + 1 colors does not exist in these cases and a k-tuple ND-coloring with
2k + 2 colors is illustrated in Figure 3.

• When n is odd, we have that χ′

a(C2p+1; k) ≥ χ′(C2p+1; k) ≥ k 2p+1
p

= k(2 +
1
p
) = 2k + ⌈ 2k

n−1
⌉ (since at most p edges of C2p+1 can be given the same color).

• k = 2, n ≥ 5, n 6= 7. In this part we consider five subcases depending on the
residues of n modulo 5:
Subcase 0: n ≡ 0 mod 5 and n ≥ 5. We color the cycle by using the se-
quence of color sets S1 = ({0, 1}, {2, 3}, {0, 4}, {1, 2}, {3, 4}) repetitively on
each group of five consecutive edges of Cn.

Subcase 1: n ≡ 1 mod 5 and n ≥ 6. For n = 5q + 1, we color the cycle
by using (q − 1) times the sequence S1 and one time the sequence S2 =
({0, 1}, {2, 3}, {0, 4}, {1, 3}, {0, 2}, {3, 4}).
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Subcase 2: n ≡ 2 mod 5 and n ≥ 12. for n = 5q + 2 with q ≥ 2, we color the
cycle by using (q − 2) times the sequence S1 and two times the sequence S2.

Subcase 3: n ≡ 3 mod 5 and n ≥ 8. for n = 5q + 3, we color the cycle
by using (q − 1) times the sequence S1 and one time the sequence S3 =
({0, 1}, {2, 3}, {0, 4}, {1, 2}, {3, 4}, {0, 2}, {1, 3}, {2, 4}).

Subcase 4: n ≡ 4 mod 5 and n ≥ 9. For n = 5q + 3, we color the cycle
by using (q − 1) times the sequence S1 and one time the sequence S4 =
({0, 1}, {2, 3}, {0, 4}, {1, 2}, {0, 3}, {1, 4}, {0, 2}, {1, 3}, {2, 4}).

In each case we obtain a 2-tuple ND-coloring of Cn with 5 = 2k + 1 colors.

• k ≥ 3 and n = 2p is even. By Observation 2, we have χ′

a(C2p; k) ≤
χ′

a(C2p; 2) + χ′(C2p; k − 2) = 5 + 2(k − 2) = 2k + 1.

• k ≥ 3 and n odd, n ≥ 2k + 1 ≥ 7. We set N = 2k + 1, n = qN + r with
0 ≤ r ≤ N − 1 and q ≥ 1.

Subcase 1: n ≡ 0 mod N . We color the cycle by using the periodic coloring
E defined by Ei = IN

ik,k, for i ≥ 0.

Subcase 2: n 6≡ 0 mod N . We provide a k-tuple ND-coloring for each value
of the residue of r modulo 6 by giving the sequence of color sets to assign
to the edges in a consecutive manner (see Figure 4 for an illustration of the
construction).

- (i) r ≡ 0 mod 6. Starting from the qN -first color sets of E, we append the
r-first color sets of the following periodic coloring F :
F0 = {0, 1, 3, 4, . . . , k}, F1 = {2, k + 1, . . . , 2k − 1}, F2 = {1, 3, 4, . . . , k, 2k},
F3 = {0, k + 1, . . . , 2k − 1}, F4 = IN

1 , F5 = IN
k+1 with Fi = Fi−6 for i ≥ 6.

- (ii) r ≡ 1 mod 6. We discuss on the parity of k.
For k odd, starting from the ((q−1)N +k)-first color sets of E, we append

the k + 1 color sets defined for 0 ≤ i ≤ ⌈k
2
⌉ − 2 by:

{

{⌈k
2
⌉ + i, . . . , 2k − ⌈k

2
⌉, 2k + 1 − i, . . . , 2k}

{0, 1, 2, . . . , ⌈k
2
⌉ − 1 + i, 2k + 1 − ⌈k

2
⌉, . . . , 2k − 1 − i}

and by

{

{k − 1, k + 1, . . . , 2k − ⌈k
2
⌉, 2k + 2 − ⌈k

2
⌉, . . . , 2k}

{0, 1, . . . , k − 2, k}
,

where a color set of the form {a, . . . , b, c, . . . , d} with c > d has to be un-
derstood as {a, . . . , b}.

Then, we complete this coloring by using the r-first color sets of G defined
at the end of this subcase.
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G

F

H

L

J

K

0 1 2 43 5 6 7 8

E

(i) r=0 mod 6; n=15; k=4

0 1 2 43 5 6 7 8

E

(ii) r=1 mod 6; n=25; k=4

(q−1)N+k+1
=14

r=7

qN=9

r=6

0 1 2 43 5 6 7 8

E

r=4

0 1 2 43 5 6 7 8

E

(iii) r=2 mod 6; n=17; k=4

qN−2=7

r=8

0 1 2 43 5 6 7 8

qN−2=16

(iv)

r=5

(vi) r=5 mod 6; n=23; k=4

0 1 2 43 5 6 7 8

(iv) r=3 mod 6; n=21; k=4

(ii)

qN−1=17

r=3

qN=18

(v) r=4 mod 6; n=22; k=4

Fig. 4. Structure of the k-tuple ND-colorings of Cn when n 6≡ 0 mod (2k + 1), n

odd.

For k even, we start by the ((q − 1)N + k + 1)-first color sets of E; we
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append the k color sets defined for 0 ≤ i ≤ k
2
− 1 by:

{

{k
2

+ i, . . . , k − 1, k + 1, . . . , 2k − k
2
, 2k − i + 1, . . . , 2k}

{0, 1, . . . , k
2
− 1 + i, k, 2k + 1 − k

2
, . . . , 2k − i − 1}

;

and we complete this coloring by using the r-first color sets of the periodic
coloring G defined by:
G0 = IN

k+1, G1 = IN
0 , G2 = IN

k , G3 = {1, 2, . . . , k − 1, 2k}, G4 = {0, k +
1, k + 2, . . . , 2k − 1}, G5 = IN

1 with Gi = Gi−6 for i ≥ 6.
- (iii) r ≡ 2 mod 6. To the qN − 2-first sets of E, we add the two sets
{1, 3, 4, . . . , k + 1} and {2, k + 2, k + 3, . . . , 2k} and we append the r-first
color sets of the following periodic coloring H defined by:
H0 = {0, 1, 3, 4, . . . , k}, H1 = IN

k+1, H2 = IN
0 , H3 = {k, k+1, . . . , 2k−2, 2k},

H4 = {0, 1, 3, 4, . . . , k−1, 2k−1}, H5 = {2, k+1, k+2, . . . , 2k−2, 2k} with
Hi = Hi−6 for i ≥ 6.

- (iv) r ≡ 3 mod 6. Starting from the (qN−1)-first sets of the coloring found
in subcase (ii); we complete with {0, 2, . . . , k−2, k, 2k+1−⌈k

2
⌉} ({0, 3, 5} if

k = 3) and we append the r-first color sets of the following periodic coloring
J :
J0 = {1, k + 1, . . . , 2k − ⌈k

2
⌉, 2k + 2 − ⌈k

2
⌉, . . . , 2k}, J1 = {0, 2, . . . , k}, J2 =

IN
k+1, k, J3 = {0, . . . , k − 2, k}, J4 = {k − 1, k + 1, . . . , 2k − ⌈k

2
⌉, 2k + 2 −

⌈k
2
⌉, . . . , 2k}, J5 = {0, 2, . . . , k− 2, k, 2k + 1−⌈k

2
⌉} with Ji = Ji−6 for i ≥ 6.

- (v) r ≡ 4 mod 6. Starting from the (qN − 2)-first sets of the coloring E;
we add the two sets {1, 3, 4, . . . , k + 1} and {0, 2, k + 2, k + 3, . . . , 2k − 1}
and we append the r-first color sets of the following periodic coloring K:
K0 = {1, 3, 4, . . . , k, 2k}, K1 = {0, k + 1, . . . , 2k − 1}, K2 = IN

1 , K3 = IN
k+1,

K4 = {0, 1, 3, 4, . . . , k− 1, k}, K5 = {2, k + 1, k + 2, . . . , 2k− 2, 2k− 1} with
Ki = Ki−6 for i ≥ 6.

- (vi) r ≡ 5 mod 6. To the qN -first sets of the coloring found in subcase (iv);
we append the r-first color sets of the following periodic coloring L:
L0 = {1, k + 1, . . . , 2k − ⌈k

2
⌉, 2k + 2− ⌈k

2
⌉, . . . , 2k}, L1 = {2, . . . , k, 2k + 1−

⌈k
2
⌉}, L2 = {0, k+1, . . . , 2k−⌈k

2
⌉, 2k+2−⌈k

2
⌉, . . . , 2k}, L3 = IN

1 , L4 = IN
k+1,

L5 = {0, 2, . . . , k} with Li = Li−6 for i ≥ 6.

2

4 The complete graph Kn and complete bipartite graph Kn,n

Let V (Kn) = {0, 1, . . . , n− 1} and E(Kn) = {eij , 0 ≤ i, j ≤ n− 1}, with eij =
ij and let V (Km,n) = {x0, x1, . . . , xn−1} ∪ {y0, y1, . . . , yn−1} and E(Km,n) =
{eij , 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1}, with eij = xiyj.
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Theorem 8 For any n ≥ 3 and k ≥ 1,

χ′

a(Kn; k) = χ′

ac(Kn; k) =

{

k(n − 1) + 2 if n is even,

kn if n is odd.

Proof : First, remark that a k-tuple ND-coloring of Kn with N colors can
exist only if there exist n distinct subsets of {0, . . . , N − 1} of size k(n − 1)
such that each number from {0, . . . , N − 1} appears an even number of times.

Thanks to this remark, we can see that if n is even, then χ′

a(Kn; k) ≥ k(n −
1) + 2 since in any n sets of k(n − 1) elements among k(n − 1) + 1 (in each
set, one color is not present and thus appears in the (n − 1) other sets), all
elements appear an odd number of times, which is impossible.

If n is odd, n = 2p + 1 for some p, the fact that χ′

a(K2p+1; k) ≥ k(2p + 1)
can be shown by contradiction: assume that k(2p+1)−1 colors suffice. Then,
among any 2p+1 sets of k(2p) colors among k(2p+1)−1, there is at least one
color that belongs to each set (assume that each color is present in at most
2p sets, then we would have 2p(k(2p + 1) − 1) ≥

∑2p+1
i=1 2pk = 2pk(2p + 1),

a contradiction), thus an odd number of times, which is impossible. The fact
that χ′

ac(K2p+1; k) ≤ k(2p+1) (and thus that χ′

a(K2p+1; k) ≤ k(2p+1)) comes
directly from Observation 1, as χ′

a(K2p+1) = 2p + 1.

If n is even, then Kn is class 1 and χ′

a(Kn) = n+1 [16]. Thus, by Observation 3,
we have that χ′

a(Kn; k) ≤ n + 1 + (k − 1)(n − 1) = k(n − 1) + 2. It remains
to show that χ′

ac(K2p; k) ≤ k(2p − 1) + 2. In order to do that, we shall start
with a cyclic edge coloring of K2p for which all vertices have the same set of
colors and modify it by increasing or decreasing by one the color intervals of
some edges in order vertices to have sets of colors different from each other.

Let φ be the cyclic k-tuple proper coloring of Kn with N −2 = k(n−1) colors
defined for 0 ≤ i < j ≤ n − 1 as follow:

φ(eij) =

{

IN−2
k(i+j),k if 0 ≤ i < j ≤ n − 2,

IN−2
2ki,k otherwise.

Notice that each vertex x has color set S(x) = {0, 1, . . . , N − 3} and that
each color interval can also be considered modulo N = k(n − 1) + 2 since
IN−2
k(i+j),k = IN

k(i+j),k and IN−2
2ki,k = IN

2ki,k.

Now we modify this coloring in order to obtain a cyclic k-tuple ND-coloring
with N colors (all intervals are modulo N in the rest of the proof). We distin-
guish two cases depending on the residue of n modulo 4.
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Case 1: n ≡ 0 mod 4. We increase by one each color of the interval φ(eij),
i < j, for (i, j) such that







3n
4
≤ i < j ≤ n − 1

j = n − 1 and n
4
≤ i ≤ n

2
− 1

j + i < n − 1 and 0 ≤ i ≤ n
4
− 2 and 3n

4
≤ j ≤ n − 2

j + i < n − 1 and n
4
≤ i < j ≤ 3n

4
− 2,

and we decrease by one each color of the interval φ(eij), i < j, for (i, j) such
that

0 ≤ i ≤ n
4
− 1 and j = n − 1 − i.

This construction is illustrated in Appendix A for the case n = 12 and k = 3.

Let φ′ be this new coloring. The vertices can be classified in four groups
depending on their two missing colors that are given by the next table:

Group Missing colors for i i
(a) k − 1 and k(3n

4
+ i) [0, n

4
− 1]

(b) k(n
4

+ i) and N − 1 [n
4
, 3n

4
− 1]

(c) k − 1 and k(i + 1 − n
4
) [3n

4
, n − 2]

(d) k − 1 and k n
2

n − 1

Now let us verify that φ′ is a cyclic k-tuple ND-coloring for Kn when n ≡ 0 mod
4. If we compare missing color sets in the same group, it is straightforward
to see that they are different. Notice that a missing color set of the group (b)
contains the color N − 1 that does not belong to the sets in others groups.
Moreover, the color k− 1 belongs to each missing color sets of the groups (a),
(c) and (d). It then suffices to remark that the second missing colors of two
such sets can not be the same.

Case 2: n ≡ 2 mod 4. The process is similar with that of Case 1 except that
some color intervals are increased by two: we increase by one each color interval
φ(eij), i < j, for (i, j) such that







⌊3n
4
⌋ ≤ i < j ≤ n − 1

j = n − 1 and ⌊n
4
⌋ ≤ i ≤ n

2
− 1

j + i < n − 1 and 0 ≤ i ≤ ⌊n
4
⌋ − 1 and ⌊3n

4
⌋ ≤ j ≤ n − 2

j + i < n − 1 and ⌊n
4
⌋ ≤ i < j ≤ ⌊3n

4
⌋ − 1,

we yet increase by one each color interval φ(eij) for (i, j) = (⌊n
4
⌋, ⌊3n

4
⌋−1) and

(i, j) = (⌊n
4
⌋ + 1, ⌊3n

4
⌋ − 2), and we decrease by one each color interval φ(eij),

i < j, for (i, j) such that

0 ≤ i ≤ ⌊n
4
⌋ − 1 and j = n − 1 − i.

Let φ′ be this new coloring. This construction is illustrated in Appendix A for
the case n = 14 and k = 3.
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We can see that each vertex i, 0 ≤ i ≤ n − 1, has exactly two missing colors
that are given by the next table:

Group Missing colors for i i
(a) k − 1 and k(⌊3n

4
⌋ + i) [0, ⌊n

4
⌋ − 1]

(b) k(⌊n
4
⌋ + i) and k(n − 2) + 1 [⌊n

4
⌋, ⌊n

4
⌋ + 1]

(c) k(⌊n
4
⌋ + i) and k(n − 1) + 1 [⌊n

4
⌋ + 2, ⌊3n

4
⌋ − 3]

(d) k(⌊n
4
⌋ + i) and k(n − 2) + 1 [⌊3n

4
⌋ − 2, ⌊3n

4
⌋ − 1]

(e) k(i − ⌊n
4
⌋) and k(n − 1) + 1 ⌊3n

4
⌋

(f) k − 1 and k(i − ⌊n
4
⌋) [⌊3n

4
⌋ + 1, n − 2]

(g) k − 1 and 2k⌊n
4
⌋ n − 1

Like for the case n ≡ 0 mod 4, it can be shown that φ′ is a cyclic k-tuple
ND-coloring for Kn when n ≡ 2 mod 4. 2

For complete bipartite graphs Km,n, the only “interesting” case is when m = n
(if m 6= n then adjacent vertices have different degrees).

Theorem 9 For any n ≥ 2 and k ≥ 1,

χ′

a(Kn,n; k) = χ′

ac(Kn,n; k) = kn + 2.

Proof : Let X and Y be the two sets of vertices of the bipartition. Firstly, it
can be seen that χ′

a(Kn,n; k) ≥ kn+2. Assume, to the contrary, that a k-tuple
ND-coloring of Kn,n with kn + 1 colors exists. Then, as each vertex of Kn,n

has degree kn, the set of missing colors S̄(v) on each vertex v consists of only
one color and as {S̄(x), x ∈ X} = {S̄(y), y ∈ Y }, then for each vertex x ∈ X,
there exists a vertex y ∈ Y such that S̄(x) = S̄(y) or equivalently such that
S(x) = S(y), a contradiction.

Secondly, we show that χ′

ac(Kn,n; k) ≤ kn + 2 by constructing such a cyclic
k-tuple ND-coloring, using a similar argument than the one of the proof of
Theorem 8 for the complete graph. Indeed, our coloring distinguishes all ver-
tices of Kn,n, not only adjacent ones.

As for the complete graph, we start with the cyclic k-tuple proper coloring φ
of Kn,n with N − 2 = kn colors defined for 0 ≤ i, j ≤ n − 1 by:

φ(eij) = IN−2
k(n+i−j−1),k.

Notice that each vertex x has color set S(x) = {0, 1, . . . , N − 3}. Now we
modify this coloring in order to obtain a cyclic k-tuple ND-coloring with N =
kn + 2 colors. We distinguish two cases depending on the residue of n modulo
2.
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Case 1: n ≡ 0 mod 2. We increase by one each φ(eij) for (i, j) such that
0 ≤ i ≤ j ≤ n − 2, and we decrease by one each φ(ei(i−1)) for i ∈ [n

2
, n − 1],

resulting in a coloring φ′. This construction is illustrated in Appendix B for
the case n = 12 and k = 3. It can be seen that the missing color sets on two
vertices xi and yj are always different since we have

S̄φ′(xi) =

{

{k(i + 1), N − 1} for i ∈ [0, n
2
− 1],

{k(i + 1), k − 1} for i ∈ [n
2
, n − 1].

S̄φ′(yj) =







{k(n − j − 1), N − 1} for j ∈ [0, n
2
− 2],

{k(n − j − 1), k − 1} for j ∈ [n
2
− 1, n − 2],

{N − 2, N − 1} for j = n − 1.

Thus φ′ is a cyclic k-tuple ND-coloring of Kn,n with N + 2 = kn + 2 colors
when n ≡ 0 mod 2.

Case 2: n ≡ 1 mod 2. We also increase by one each φ(eij) for (i, j) such that
0 ≤ i ≤ j ≤ n − 2; we decrease by one each φ(ei(i−1)) for i ∈ [n+1

2
, n − 1] and

we yet increase by one φ(eii) for i = ⌊n
2
⌋ − 1, resulting in a coloring φ′. This

construction is illustrated in Appendix B for the case n = 11 and k = 3. It can
be seen that the missing colors on two vertices xi and yj are always different
since we have

S̄φ′(xi) =







{k(i + 1), N − 1} for i ∈ [0, ⌊n
2
⌋], i 6= ⌊n

2
⌋ − 1,

{k(i + 1), N − k − 1} for i = ⌊n
2
⌋ − 1,

{k(i + 1), k − 1} for i ∈ [⌊n
2
⌋ + 1, n − 1].

S̄φ′(yj) =







{k(n − j − 1), N − 1} for j ∈ [0, ⌊n
2
⌋ − 2],

{k(n − j − 1), N − k − 1} for j = ⌊n
2
⌋ − 1,

{k(n − j − 1), k − 1} for j ∈ [⌊n
2
⌋, n − 2],

{N − 2, N − 1} for j = n − 1.

Thus φ′ is a cyclic k-tuple ND-coloring of Kn,n with N = kn + 2 colors when
n ≡ 1 mod 2. 2

5 Concluding remarks

We have turned our attention on k-tuple ND-colorings of graphs or equiva-
lently, to ND-colorings of k-uniform multigraphs (multigraphs where each edge
has multiplicity k). However, it seems also interesting to study ND-colorings
of non-uniform multigraphs. Going in this direction, we propose the following
‘Vizing-like’ conjecture for the ND-chromatic index of a (not necessarily uni-
form) multigraph. It extends the one given in [16] for graphs and is similar
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with the one given for the total chromatic number of a multigraph (see [9],
Section 4.9):

Conjecture 10 For any connected multigraph G of order at least three, G 6=
C5, and of multiplicity µ(G),

χ′

a(G) ≤ ∆(G) + µ(G) + 1.
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A Cyclic 3-tuple ND-colorings of K12 and K14

Contruction of the cyclic 3-tuple ND-coloring φ′ given in the proof of Theo-
rem 8: below are the matrices of the color intervals on the edges of K12 and
K14 (to simplify, only the first color of each cyclic interval is given). Values
increased by one are in bold; values decreased by one are underlined and val-
ues increased by two are overlined (and in bold). The column-vectors on the
right are the sets of the two missing colors S̄(i) of each vertex i.

φ′(K12) =









































3 6 9 12 15 18 21 24 28 31 34

3 9 12 15 18 21 24 27 31 34 6

6 9 15 18 21 24 27 30 34 3 12

9 12 15 22 25 28 31 0 3 6 19

12 15 18 22 28 31 0 3 6 9 25

15 18 21 25 28 0 3 6 9 12 31

18 21 24 28 31 0 6 9 12 15 3

21 24 27 31 0 3 6 12 15 18 9

24 27 30 0 3 6 9 12 18 21 15

28 31 34 3 6 9 12 15 18 25 22

31 34 3 6 9 12 15 18 21 25 28

34 6 12 19 25 31 3 9 15 22 28









































,









































{2, 27}

{2, 30}

{2, 33}

{18, 34}

{21, 34}

{24, 34}

{27, 34}

{30, 34}

{33, 34}

{2, 21}

{2, 24}

{2, 18}









































φ′(K14) =
















































3 6 9 12 15 18 21 24 27 31 34 37 40

3 9 12 15 18 21 24 27 30 34 37 40 6

6 9 15 18 21 24 27 30 33 37 40 3 12

9 12 15 22 25 28 31 34 38 0 3 6 19

12 15 18 22 28 31 34 38 0 3 6 9 25

15 18 21 25 28 34 37 0 3 6 9 12 31

18 21 24 28 31 34 0 3 6 9 12 15 37

21 24 27 31 34 37 0 6 9 12 15 18 3

24 27 30 34 38 0 3 6 12 15 18 21 9

27 30 33 38 0 3 6 9 12 18 21 24 15

31 34 37 0 3 6 9 12 15 18 25 28 22

34 37 40 3 6 9 12 15 18 21 25 31 28

37 40 3 6 9 12 15 18 21 24 28 31 34

40 6 12 19 25 31 37 3 9 15 22 28 34
















































,
















































{2, 30}

{2, 33}

{2, 36}

{18, 37}

{21, 37}

{24, 40}

{27, 40}

{30, 40}

{33, 37}

{36, 37}

{21, 40}

{2, 24}

{2, 27}

{2, 18}
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B Cyclic 3-tuple ND-colorings of K12,12 and K11,11

Contruction of the cyclic 3-tuple ND-coloring φ′ given in the proof of Theo-
rem 9: below are the matrices of the color intervals on the edges of K12,12 and
K11,11 (to simplify, only the first color of each cyclic interval is given). Values
increased by one are in bold; values decreased by one are underlined and val-
ues increased by two are overlined (and in bold). The two column-vectors on
the right of each matrix are the sets of the two missing colors of the vertices
xi and yj.

φ′(K12,12) =









































34 31 28 25 22 19 16 13 10 7 4 0

0 34 31 28 25 22 19 16 13 10 7 3

3 0 34 31 28 25 22 19 16 13 10 6

6 3 0 34 31 28 25 22 19 16 13 9

9 6 3 0 34 31 28 25 22 19 16 12

12 9 6 3 0 34 31 28 25 22 19 15

15 12 9 6 3 37 34 31 28 25 22 18

18 15 12 9 6 3 37 34 31 28 25 21

21 18 15 12 9 6 3 37 34 31 28 24

24 21 18 15 12 9 6 3 37 34 31 27

27 24 21 18 15 12 9 6 3 37 34 30

30 27 24 21 18 15 12 9 6 3 37 33









































,









































{3, 37}

{6, 37}

{9, 37}

{12, 37}

{15, 37}

{18, 37}

{2, 21}

{2, 24}

{2, 27}

{2, 30}

{2, 33}

{2, 36}









































,









































{33, 37}

{30, 37}

{27, 37}

{24, 37}

{21, 37}

{2, 18}

{2, 15}

{2, 12}

{2, 9}

{2, 6}

{2, 3}

{36, 37}









































φ′(K11,11) =





































31 28 25 22 19 16 13 10 7 4 0

0 31 28 25 22 19 16 13 10 7 3

3 0 31 28 25 22 19 16 13 10 6

6 3 0 31 28 25 22 19 16 13 9

9 6 3 0 32 28 25 22 19 16 12

12 9 6 3 0 31 28 25 22 19 15

15 12 9 6 3 34 31 28 25 22 18

18 15 12 9 6 3 34 31 28 25 21

21 18 15 12 9 6 3 34 31 28 24

24 21 18 15 12 9 6 3 34 31 27

27 24 21 18 15 12 9 6 3 34 30





































,





































{3, 34}

{6, 34}

{9, 34}

{12, 34}

{15, 31}

{18, 34}

{2, 21}

{2, 24}

{2, 27}

{2, 30}

{2, 33}





































,





































{30, 34}

{27, 34}

{24, 34}

{21, 34}

{18, 31}

{2, 15}

{2, 12}

{2, 9}

{2, 6}

{2, 3}

{33, 34}
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