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BP 47870, 21078 Dijon cedex, France

{barjl, kheddouc, otogni}@u-bourgogne.fr

Abstract

The irregularity strength of a simple graph is the smallest integer k for which there exists
a weighting of the edges with positive integers at most k such that all the weighted degrees of
the vertices are distinct. In this paper we study the irregularity strength of circulant graphs
of degree 4. We find the exact value of the strength for a large family of circulant graphs.
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1 Introduction and Definitions

All the graphs we deal with are undirected, simple and connected.
Let G = (V, E) be a graph with vertex set V and edge set E.
A function w : E → Z+ is called a weighting of G, and for an edge e ∈ E, w(e) is called the

weight of e. The strength s(w) of w is defined as s(w) = maxe∈E w(e). The weighted degree of a
vertex x ∈ V is the sum of the weights of its incident edges: dw(x) =

∑
e3x w(e). The irregularity

strength s(G) of G is defined as s(G) = min{s(w), w is an irregular weighting of G}.
The study of s(G) was initiated by Chartrand et al. [CJL+88] and has proven to be difficult in

general. There are not many graphs for which the irregularity strength is known. For an overview
of the subject, the reader is referred to the survey of Lehel [Leh91] and recent papers [Jv95, JT95,
AT98, ?, ?].

The irregularity strength of regular graphs was considered by several authors. For a regular
graph G of order n and degree r, let λ(G) = dn+r−1

r e. A simple counting argument gives s(G) ≥
λ(G).

On the other hand, an upper bound of n
2 +9 was given for regular graphs of order n in [FL87].

This result was improved recently in [?]. Nevertheless, there is still a great gap between lower and
upper bounds on the irregularity strength of regular graphs.

Moreover, for all the connected regular graphs for which the irregularity strength is known, we
have s(G) ≤ λ(G) + 1.

The following conjecture is due to Jacobson (see [Leh91, FL87]):

Conjecture 1 There exists an absolute constant c such that for each regular graph G, s(G) ≤
λ(G) + c.

Circulant graphs are a large family of regular graphs which are studied in the context of
interconnection networks [?] and have good properties such as symmetry, vertex-transitivity, ...

Definition 1 Let n be an integer and let s1, s2, . . . , sk be a sequence of integers, with 1 ≤ s1 <
s2 < . . . < sk ≤ n/2. The circulant graph G = Cn(s1, s2, . . . , sk) of order n is a graph with vertex
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set V (G) = {0, 1, . . . , n− 1} and edge set E(G) = {(x, x± si mod n), x ∈ V (G), 1 ≤ i ≤ k}. It is
a Cayley graph on the additive group of integers modulo n, with set of generators {s1, s2, . . . , sk}.

In this paper, we study the irregularity strength of circulant graphs of degree 4. We find the
exact value for the irregularity strength of circulant graphs of the form Cn(1, k) with n ≥ 4k + 1.
These graphs consists in a cycle of length n plus chords joining vertices at distance k on the cycle.

We will use the following notations (see Figure 1): for any t, the vertices of C4t+1(1, k) are
labeled y0, y1, . . . , y2t going clockwise on the cycle and x0 = y0, x1, x2, . . . , x2t going counterclock-
wise.

For a weighting w on C4t+1(1, k), denote by ai (resp. bi) the weight of the edge (xi, xi+1) (resp.
(yi, yi+1)) for 0 ≤ i ≤ 2t− 1, and by a2t = b2t the weight of the edge (x2t, y2t), and let





ci = w(xi, xi+k) 0 ≤ i ≤ 2t− k
c̄i = w(yi, yi+k) 0 ≤ i ≤ 2t− k
ci = w(xi, y4t−i−k+1) 2t− k + 1 ≤ i ≤ 2t
c̄i = w(yi, x4t−i−k+1) 2t− k + 1 ≤ i ≤ 2t

c−i = w(yi, xki) 1 ≤ i ≤ k − 1
c̄−i = w(xi, yki

) 1 ≤ i ≤ k − 1
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Figure 1: Notations

Let us give a construction of C4(t+1)+1(1, k) from C4t+1(1, k) useful for the proof of main
results. Let G = C4t+1(1, k) and let P4 = (x2t+1, x2t+2, y2t+2, y2t+1) be a path of length 3 where
t ≥ k ≥ 2. We define the graph G.P4 as follows :

V (G.P4) = V (G)
⋃

V (P4)

E(G.P4) = E(G) \(
k⋃

i=1

{(x2t−k+i, y2t−i+1)}
⋃{(x2t, y2t)})

⋃
E(P4)

k⋃
i=1

{(x2t−k+2+i, y2t+3−i)}
⋃{(x2t−k+1, x2t+1), (x2t−k+2, x2t+2), (y2t−k+1, y2t+1), (y2t−k+2, y2t+2)}

Observe that G.P4 = C4t+5(1, k). Thus for any t ≥ k ≥ 2, C4t+1(1, k) can be obtained by
iterating (t− k) times this composition starting from C4k+1(1, k).

2 Preliminaries

Definition 2 For n = 4t + 1, with t ≥ k ≥ 2, Cn(1, k) verifies the property Pt if it admits an
irregular weighting of strength s = λ(Cn(1, k)) = t + 1 such that :

i) a2t = b2t = a2t−1 = b2t−1 + 1 = s,
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ii) c2t−i = c̄2t−i = s, for each i, 0 ≤ i ≤ k,

iii) a2t−2i+1 ≥ b2t−2i+1 ≥ dk
2 e+ 2− i, for each i, 0 ≤ i ≤ dk

2 e − 1,

iv) when k is even, a2t−2k+2i+1 ≥ i + 1, for each i, 0 ≤ i ≤ k − 1.

Lemma 1 For k ≥ 2, C4k+1(1, k) verifies the property Pk.

Proof : In order to prove that C4k+1(1, k) verifies the property Pk, we construct an irregular
weighting w as follows :





a0 = b0 = 1
ai = b i+1

2 c+ 1 for each i, 1 ≤ i ≤ 2k
bi = ai−1 for each i, 1 ≤ i ≤ 2k
ci = c̄i = i + 1 for each i, 0 ≤ i ≤ k − 1
ci = c̄i = k + 1 for each i, k ≤ i ≤ 2k
ci = c̄i = 1 for each i, 1− k ≤ i ≤ −1

We can easily verify that we have dw(x0) = dw(y0) = 4, and for each 1 ≤ i ≤ 2k :
{

dw(xi) = ai + ai−1 + ci + ci−k = 4 + 2i
dw(yi) = bi + bi−1 + ci + ci−k = 3 + 2i

Consequently, w is irregular and of strength equal to λ(C4k+1(1, k)) = k +1 (i.e, statements i)
and ii) are verified). Moreover, by construction the remaining statements of property Pk are also
verified : the third statement is verified since a2k−2i+1 ≥ b2k−2i+1 = b 2k−2i+1

2 c+ 1 ≥ dk
2 e − i + 2.

The fourth statement is also verified since a2i+1 = b 2i+2
2 c + 1 = i + 2 ≥ i + 1. See part A of

Appendix for an example when k = 4.
2

3 Results

In this section, we present two propositions. The first one construct an irregular weighting for
C4t+1(1, k) for any t ≥ k. The second proposition allows to give an irregular weighting for the
remaining graphs Cn(1, k), with n = 4t + 2, 4t + 3, 4t + 4 for each t ≥ k.

Proposition 1 For any t with t ≥ k ≥ 2, there exists an irregular weighting of C4t+1(1, k) which
verifies the property Pt.

Proof :
The proof is done by induction on t. For t = k, the result holds by Lemma 1.
Assume that there exists an irregular weighting of C4t+1(1, k), which verifies the property Pt.

We will construct a weighting of C4t+5(1, k) which verifies property Pt+1.
Let w be an irregular weighting of G = C4t+1(1, k) which verifies the property Pt. Let G′ =

G.P4 = C4t+5(1, k) and w′ be the weighting of G′ constructed from the weighting w of G as
follows :

w′(e) =





w(e) for e ∈ E(G) \M
w(e)− 1 for e ∈ M

t + 2 for e ∈ A ∪B
t + 1 for e ∈ C
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where,

M =
d k

2 e−1⋃
i=1

{(x2t−2i+1, x2t−2i+2), (y2t−2i+1, y2t−2i+2)}

A =
k⋃

i=1

{(x2t−k+i, y2t−i+3)}
B = {(x2t+2, y2t+2), (y2t−k+2, y2t+2), (x2t−k+2, x2t+2), (x2t+1, x2t+2)}
C = {(x2t, x2t+1), (y2t, y2t+1), (x2t−k+1, x2t+1), (y2t+1, y2t+2), (y2t−k+1, y2t+1)}

Note that, by statement iii) of property Pt of G, w(e) ≥ 2 if e ∈ M . Thus, w′(e) ≥ 1 for each
e ∈ E(G′). Moreover, the degrees of the vertices given by the weighting w′ are as follows :

{
dw′(xi) = dw(xi) = 2i + 4 for 0 ≤ i ≤ 2t− k + 1
dw′(yi) = dw(yi) = 2i + 3 for 1 ≤ i ≤ 2t− k + 1

Observe that for each of the following vertices, the weight of one adjacent edge has been
decreased by one, and the weight of another adjacent edge has been increased by one. So the
weighted degrees are unchanged : for 0 ≤ i ≤ dk

2 e − 2,





dw′(x2t−2i) = (a2t−2i−1 − 1) + a2t−2i + c2t−2i−k + (c2t−2i + 1) = dw(x2t−2i)
dw′(y2t−2i) = (b2t−2i−1 − 1) + b2t−2i + c̄2t−2i−k + (c̄2t−2i + 1) = dw(y2t−2i)
dw′(x2t−2i−1) = a2t−2i−1 + (a2t−2i − 1) + c2t−2i−k + (c2t−2i + 1) = dw(x2t−2i−1)
dw′(y2t−2i−1) = b2t−2i−1 + (b2t−2i − 1) + c̄2t−2i−k + (c̄2t−2i + 1) = dw(y2t−2i−1)

Moreover, when k is even, the weighted degrees of vertices x2t−k+2 and y2t−k+2 are not given
above. Their weighted degrees are :

{
dw′(x2t−k+2) = a2t−k+1 + a2t−k+2 + c2t−2k+2 + c2t−k+1 = dw(x2t−k+2) + 1
dw′(y2t−k+2) = b2t−k+1 + b2t−k+2 + c2t−2k+2 + c2t−k+1 = dw(y2t−k+2) + 1

We can see that, in this case, dw′(x2t−k+2) = dw′(y2t−k+3) and there does not exist a vertex
u ∈ V (G′) such that dw′(u) = dw(y2t−k+2) (see part B of Appendix).

For the vertices of P4 we have :




dw′(x2t+1) = 4t + 6
dw′(x2t+2) = 4t + 8
dw′(y2t+1) = 4t + 5
dw′(y2t+2) = 4t + 7

Let a′i, b
′
i, c′i and c̄′i be the values of edges of G′ given by the weighting w′ as defined in section

1. We distinguish two cases depending on the parity of k.

Case 1 : k is odd.
In order to verify the property Pt+1 for G′, one can see that 1 ≤ w′(e) ≤ t + 2 for each

e ∈ E(G′) and for each u, v ∈ V (G′), dw′(u) 6= dw′(v) when u 6= v.
Thus w′ is irregular and the statements i) and ii) hold.
The third one iii) is also verified since
a′2(t+1)−2i+1 ≥ b′2(t+1)−2i+1 = t + 1 ≥ dk

2 e+ 2− i for i = 1 or 2, and
a′2(t+1)−2i+1 ≥ b′2(t+1)−2i+1 ≥ b2t−2(i−1)+1 − 1 ≥ dk

2 e+ 2− (i− 1)− 1 ≥ dk
2 e+ 2− i for each i,

3 ≤ i ≤ dk
2 e − 1.

Case 2 : k is even (a complete example is given in Appendix). We use a cycle C induced
by the following vertices C = (x2t−k+2, x2t−k+1, . . . , x2t−2k+2). In order for the weighting to
be irregular, it suffices to decrease by two the weighted degree of x2t−k+2 in w′ (i.e, to obtain
dw′(x2t−k+2) = dw(y2t−k+2)) without changing degrees of other vertices.

To do this, we decrease and increase alternately by one the weight of the edges of C starting
from x2t−k+2. As C is odd, the two edges of C which are adjacent to x2t−k+2 are both decreased
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Figure 2: An irregular weighting of C4t + 2(1, k) on the right is obtained from the irregular
weighting of C4t + 1(1, k) on the left

by one. Thus the degree of x2t−k+2 is decreased by two. Moreover, for any other vertex of C, the
degree is unchanged.

As G verified statement iv) of property Pt, then the weights of edges of C which are decreased
are greater or equal to one. In other hand, as the strength of G is equal to t + 1 and edges of C
are in G, so by increasing some edges of C by one, the strength of w′ remains t + 2 = λ(G′).

Observe that statements i), ii), iii) of property Pt+1 are proved similarly than in case k odd.
So we now prove statement iv) for G′. Note that :

a′2(t+1)−2k+2i+1 = a′2t−2k+2(i+1)+1 = a2t−2k+2(i+1)+1 − 1 ≥ i + 1 for 1 ≤ i ≤ k − 2. Moreover,
for i = k − 1, a′2(t+1)−2k+2i+1 = t + 2 ≥ k − 1 + 1 = k. 2

The following proposition extends the irregular weighting to cases n = 4t+2, 4t+3 and 4t+4,
for t ≥ k.

Proposition 2 If C4t+1(1, k) verifies property Pt then there exists an irregular weighting of
C4t+1+i(1, k), for any i, 1 ≤ i ≤ 3, of strength s′ = λ(C4t+1+i(1, k)) = t + 2.

Proof : Observe that λ(C4t+1+i(1, k)) = d 4t+1+i+3
4 e = t + 2. We start from G = C4t+1(1, k) with

an irregular weighting verifying property Pt and we add i vertices, 1 ≤ i ≤ 3, by subdividing the
edge (x2t, y2t) in i + 1 edges (see Figures 2, 3 and 4, where α1, α2, β1 and β2 are the weights of
some edges of the irregular weighting of C4t+1(1, k)).

The new edges and the edges whose endpoints have been modified are weighted as shown
below:

Case i = 1: a weighting is obtained simply by subdividing the edge (x2t, y2t) in two and then
by giving the weight t + 2 to the two created edges (see Figure 2).

Case i = 2: we distinguish between the case k odd and k even. The process for both cases is
given in Figure 3, where dashed edges have weight t + 1 and bold edges are edges whose weights
have been modified.

Case i = 3: we distinguish between the case k odd and k even. The process for both cases is
given in Figure 4.

2

From proposition 1 and 2, we deduce the following result :

Theorem 1 For n ≥ 4k + 1 and k ≥ 2,

s(Cn(1, k)) =
⌈

n + 3
4

⌉
.
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4 Concluding remarks

We studied the irregularity strength of circulant graphs Cn(1, k) when k ≤ n−1
4 and found the

exact value. Our method does not seem to work for n
4 ≤ k ≤ n

2 , because we have not found an
irregular weighting to start the induction process.

But, the isomorphisms of circulant graphs allow us to come back to some cases when k ≤ n
4 .

For instance, the following isomorphisms are easy to see :




C2k−1(1, k) ∼= C2k−1(1, 2)
C3k−1(1, k) ∼= C3k−1(1, 3)
C4k−1(1, k) ∼= C4k−1(1, 4)

More generally, if gcd(n, k) = 1 then we have Cn(1, k) ∼= Cn(1, k−1 mod n).
Moreover, our study is also generalized to some circulant graphs Cn(s1, s2) with s1 6= 1 and

s2 > s1. If gcd(n, s1) = 1 or gcd(n, s2) = 1 then Cn(s1, s2) ∼= Cn(1, k) for some k.
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Appendix : a complete example when k = 4

Let us give a complete example of the construction of an irregular weighting of C21(1, 4) from
C17(1, 4). The values on the edges represent their weights and the bold values on vertices represent
their weighted degrees.
Part A: an irregular weighting of C17(1, 4) verifying property P4.
Part B: the first step of the extension of the weighting of C17(1, 4) to the graph C21(1, 4) by
composition with P4. Notice that the weighting is not irregular as there is two vertices of degree
17.
Part C: the weighting of part B is modified to become irregular by using a cycle of length 5 (in
bold on the figure) to decrease the weighted degree of one of the two vertices of degree 17 to 15.
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