Olivier Togni,
IEM/LIB
olivier.togni@u-bourgogne.fr

Modifié le 20 janvier 2025

Plan

- 1. Historique et motivation
- 2. Définitions
- 3. Chemins, cycles, connexité
- 4. Sous-graphes et isomorhpisme
- 5. Cliques et ensembles stables
- 6. Classes de graphes
 - Graphes planaires
 - Graphes triangulés
- 7. Représentations des graphes

Historique et motivation

Un peu d'histoire...

▶ 1736 : Leonhard Euler, les ponts de Konigsberg

▶ 1852 : De Morgan, coloriage des cartes géographiques en au plus 4 couleurs

Historique et motivation

Pourquoi les graphes?

- Ils sont partout (et surtout en Informatique)
- ▶ mêmes problématiques dans différents domaines ⇒ intérêt de trouver des solutions génériques
- objets mathématiques (relativement) simples mais sur lesquels il y a de nombreux problèmes difficiles

Molécule de vitamine C

Définitions

Définition

Définition

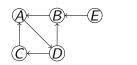
Graphe orienté G = (V, E), avec

V un ensemble fini ou infini d'éléments appelés *sommets* (ou nœuds) et

 $E \subset V \times V$ ensemble de couples de sommets appelés arcs

Rem : E est une relation sur V

Exemple : $V = \{A, B, C, D, E\}$, $E = \{(A, D), (B, A), (C, A), (D, B), (D, C), (E, B)\}$



Définitions

Définition

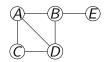
Définition

Graphe G = (V, E) non orienté si E est un ensemble de paires de sommets, appelées des *arêtes*. Pour simplifier, on note xy l'arête $\{x,y\}$.

Rem : Correspond à une graphe orienté symétrique (E est une relation symétrique : $(x, y) \in E \Leftrightarrow (y, x) \in E$)

Rem : très fréquents \Rightarrow on précise plutôt quand le graphe est orienté

Exemple : $V = \{A, B, C, D, E\}, E = \{AD, BA, CA, DB, DC, EB\}$



Extensions

- graphe valué : des poids (réels ou entiers) sont associés à chaque arête et/ou sommet;
- multigraphe : il peut y avoir plusieurs arêtes (arêtes parallèles) entre deux sommets;
- hypergraphe : les (hyper)arêtes peuvent relier plus de deux sommets.

Un peu de vocabulaire

Définition

Pour un graphe G = (V, E) orienté ou non,

- ightharpoonup n = |V(G)| est l'ordre de G
- ightharpoonup m = |E(G)| est la taille de G
- \blacktriangleright une boucle est un arc (x,x) ou une arête xx
- deux sommets joints par un arc ou une arêtes sont dits voisins ou adjacents
- le degré d(x) d'un sommet x est le nombre d'arcs ou arêtes auxquels x appartient (nombre de voisins)
- ▶ si G est orienté, le degré sortant d⁺(x) est le nombre d'arcs issus de x et son degré entrant d⁻(x) est le nombre d'arcs pointant sur x

☐ Définitions

Premières propriétés

Proposition

Pour tout graphe G = (V, E),

$$\sum_{x\in V}d(x)=2|E|$$

Corollaire

Pour tout graphe G = (V, E), le nombre de sommets de degrés impairs est pair.

Chemins, cycles, connexité

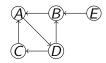
Chemin dans un graphe

Définition

Un chemin de longueur p dans un graphe G = (V, E) orienté ou non est un suite de sommets $x_0, x_1, x_2, \ldots, x_p$ dans laquelle deux sommets consécutifs sont joints par un arc ou une arête.

Rem : on peut passer plusieurs fois par un même sommet ou par un même arc ou arête

Ex : E, B, A, D, B est un chemin de longueur 4 mais B, D, C, A n'est pas un chemin

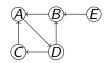


Cycle dans un graphe

Définition

Un circuit (cycle) de longueur p dans un graphe G = (V, E) orienté (non orienté) est un chemin $x_0, x_1, \ldots, x_{p-1}, x_0$ (qui reboucle sur lui-même).

Ex : B, A, D, B est un circuit de longueur 3



Connexité

Définition

Un graphe G = (V, E) (non orienté) est connexe s'il existe un chemin entre toute paire de sommets.

Définition

Un graphe G = (V, E) orienté est fortement connexe s'il existe un chemin entre toute couple de sommets. Il est connexe si le graphe non orienté sous-jacent est connexe.

```
Rem : si le graphe est non orienté, c'est facile à voir !

Ex : G = (\{A, B, C, D, E\}, \{(A, D), (B, A), (C, A), (D, B), (D, C), (E, B)\})

est non fortement connexe mais connexe
```

Distance et diamètre

Définition

Dans un graphe G = (V, E) orienté ou non, la distance d(x, y) entre deux sommets x et y est la longueur d'un plus court chemin entre eux.

Le diamètre D(G) du graphe G est la plus grande des distances dans $G: D(G) = \max_{x,y \in V} d(x,y)$.

Ex :
$$G = (\{A, B, C, D, E\}, \{AD, BA, CA, DB, DC, EB\})$$

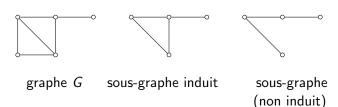
 $d(B, C) = 2$ et il y a deux plus courts chemins entre B et C :
 B, A, C ou B, D, C
 $D(G) = 3 = d(C, E)$

Sous-graphes

Définition

Un graphe $H=(V_H,E_H)$ est un sous-graphe du graphe $G=(V_G,E_G)$ si $V_H\subset V_G$ et $E_H\subset E_G$. H est sous-graphe induit de G si $\forall x,y\in V_H,xy\in E_G\Rightarrow xy\in V_H$

Ex:



Sous-graphes et isomorphisme

Isomorphisme

Définition

Deux graphes $G = (V_G, E_G)$ et $H = (V_H, E_H)$ sont isomorphes s'il existe une bijection $h: V_G \to V_H$ telle que si $xy \in E_G$ alors $h(x)h(y) \in E_H$.

Ex: les deux graphes ci-dessous sont-il isomorphes?

Cliques d'un graphe

Clique = sous-graphe complet

Définition

Un ensemble de sommets $X \subset V(G)$ d'un graphe G forme une clique si $\forall x, y \in X, xy \in E(G)$.

Une clique X est maximale si $\forall y \in V \setminus X$, $X \cup \{y\}$ n'est pas une clique.

Une clique X est maximum si toute clique Y satisfait $|X| \ge |Y|$. La taille d'une clique maximum de G est notée $\omega(G)$.

Listage des cliques maximales

Algorithme de Bron-Kerbosch (1973):

Pour un sommet x, N(x) désigne l'ensemble des voisins de x

L'appel initial à cette fonction récursive se fait avec

$$K = \emptyset, P = V(G)$$
 et $X = \emptyset$

Algorithm 1: BronKerbosch(K, P, X)

```
if P = \emptyset and X = \emptyset then
```

afficher que K est une clique maximale

end

foreach sommet $v \in P$ do

BronKerbosch($K \cup \{v\}$, $P \cap N(v)$, $X \cap N(v)$);

$$P \leftarrow P \setminus \{v\};$$

$$X \leftarrow X \cup \{v\};$$

end

Ensembles stables d'un graphe

Définition

Un ensemble de sommets $X \subset V(G)$ d'un graphe G est un stable si $\forall x, y \in X, xy \notin E(G)$.

Un stable X est maximal si $\forall y \in V \setminus X$, $X \cup \{y\}$ n'est pas un stable.

Un stable X est maximum si $\forall Y \subset V(G)$ stable, $|X| \geq |Y|$. Le nombre de stabilité $\alpha(G)$ du graphe G est la taille d'un stable maximum.

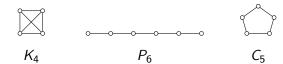
Propriété

Une clique dans G est un stable dans \overline{G} (et inversement) et donc $\alpha(G) = \omega(\overline{G}); \omega(G) = \alpha(\overline{G}).$

Classes de graphes

Classes de graphes "communes"

- ▶ Graphe complet K_n a n sommets : $\forall x, y \in V(K_n), xy \in E(K_n)$ (E est une relation totale)
- ► Graphe chemin P_n a n sommets : $V = \{x_1, x_2, \dots, x_n\}$ et $E = \{x_i x_{i+1}, i = 1..n 1\}$
- ► Graphe cycle C_n a n sommets : $V = \{x_1, x_2, ..., x_n\}$ et $E = \{x_i x_{i+1}, i = 1..n 1\} \cup \{x_n x_1\}$



 $\label{licence 3} \ Licence \ 3 \ Informatique: cours \ Graphes \ Chapitre \ I: G\'{e}n\'{e}ralit\'{e}s \ sur \ les \ graphes$

Classes de graphes

Abres, forêts

Définition

Une forêt est un graphe sans cycle. Un arbre est une forêt connexe.

Quelques propriétés :

- ▶ Un arbre vérifie |V| = |E| + 1
- Un graphe est un arbre ssi il existe un unique chemin entre toute paire de sommets
- ▶ Un arbre d'ordre au moins 2 contient au moins deux sommets de degré 1 (feuilles)

Graphes bipartis

Définition

Un graphe G = (V, E) est biparti s'il est possible de partitionner V and deux sous-ensembles X et Y de sorte que chaque arête joigne un sommet de X et un sommet de Y.

Proposition

Un graphe est biparti ssi il ne contient pas de cycle de longueur impaire.

Graphe biparti complet
$$K_{m,n}: V = X \cup Y$$
 avec $X = \{x_1, \ldots, x_m\}$ et $Y = \{y_1, \ldots, y_n\}$ et $E = \{x_i y_j, 1 \le i \le m, 1 \le j \le n\}$

 ${\sf Licence\ 3\ Informatique: cours\ Graphes\ \ Chapitre\ I: G\'en\'eralit\'es\ sur\ les\ graphes}$

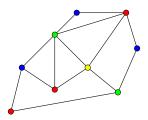
Classes de graphes

Graphes planaires

Graphes planaires

Définition

Un graphe est planaire s'il peut être dessiné sur le plan (ou la sphère) de sorte qu'aucune arête n'en coupe une autre. Une face est une région connexe du plan délimitée par des arêtes (la face "extérieure" est infinie sur le plan, les faces sont toutes finies sur la sphère).



−Classes de graphes └─Graphes planaires

Caractérisation d'Euler

Proposition

Soit un graphe planaire G dessiné sur le plan sans croisement d'arête et soit v = |V(G)|, e = E|G| et f le nombre de faces. On a

$$v - e + f = 2$$

Rem : se généralise à des graphes dessinés sur des surfaces de genre $g \geq 1$ (sphères a g trous)

Ex : l'icosaédron possède 12 sommets, 30 arêtes et 20 faces

Classes de graphes

Graphes planaires

Caractérisation des graphes planaires

Définition

Une subdivision d'un graphe H est un graphe H' obtenu en plaçant sur chaque arête de H, 0, 1 ou plusieurs sommets de degré 2.

Théorème (Kuratowski, 1930)

Un graphe G est planaire si et seulement si il ne contient pas de sous-graphe qui est une subdivision de K_5 ou $K_{3,3}$.

Classes de graphes

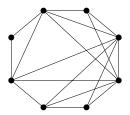
Graphes triangulés

Graphes triangulés

Définition

Un graphe triangulé (ou cordal) est un graphe dans lequel chaque cycle de longueur au moins 4 a une corde, ou, de façon équivalente, qui ne contient pas de cycle induit de longueur supérieure à 3.

Ex:



-Classes de graphes - Graphes triangulés

Ordre simplicial

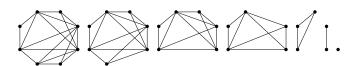
Définition

Un sommet simplicial d'un graphe est un sommet dont les voisins induisent une clique (sous-graphe complet).

Un ordre simplicial d'un graphe G d'ordre n est un ordre x_1, x_2, \ldots, x_n tel que x_i est un sommet simplicial du sous-graphe de G induit par les sommets x_{i+1}, \ldots, x_n .

Théorème

Tout graphe triangulé admet un ordre simplicial.



Représentation des graphes

Deux structures générales : matrice d'adjacence et tableau de listes d'incidence

+ Structures adaptées suivant les graphes à traiter (arbre, graphe régulier, ...)

La meilleure façon de coder le graphe doit être décidée en fonction

- du type de graphe à traiter,
- de l'algorithme à implanter,
- du temps de développement,
- **.**..

Matrice d'adjacence

Graphe G d'ordre n avec sommets numérotés $0, 1, \ldots, n-1$

Définition

La matrice d'adjacence A(G) du graphe G est un tableau $n \times n$ de booléens tel que $A[i,j] = 1 \Leftrightarrow$ sommets i et j sont voisins.

$$\left(\begin{array}{ccccc} 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{array}\right)$$

Test de la présence d'une arête : O(1)

Parcours du voisinage : O(n)

Parcours de toutes les arêtes : $O(n^2)$

Facile à implanter mais coûteux en place si le graphe a peu d'arêtes

Listes d'incidence

Graphe G d'ordre n et taille m avec sommets numérotés de 0 à n-1

Définition

Le tableau de listes d'incidence I(G) du graphe G est un tableau de taille n tel que I[j] contient la liste des voisins du sommet n° i.

Ex:

Test de la présence d'une arête : $O(\Delta)$ ($\Delta = \mathsf{degré\ max}$)

Parcours du voisinage : $O(\Delta)$

Parcours de toutes les arêtes : O(m)

Moins facile à implanter mais plus compact.