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Abstract

Frequency planning consists in allocating frequencies to the trans-
mitters of a cellular network so as to ensure that no pair of transmitters
interfere. We study the problem of reducing interference by modeling
this by a radio k-labeling problem on graphs: For a graph G and an in-
teger k ≥ 1, a radio k-labeling of G is an assignment f of non negative
integers to the vertices of G such that

|f(x)− f(y)| ≥ k + 1− dG(x, y),

for any two vertices x and y, where dG(x, y) is the distance between
x and y in G. The radio k-chromatic number is the minimum of
max{f(x) − f(y) : x, y ∈ V (G)} over all radio k-labelings f of G.
In this paper we present the radio k-labeling for the Cartesian prod-
uct of two graphs, providing upper bounds on the radio k-chromatic
number for this product. These results help to determine upper and
lower bounds for radio k-chromatic numbers of hypercubes and grids.
In particular, we show that the ratio of upper and lower bounds of
the radio number and the radio antipodal number of the square grid
is asymptotically 3

2 .

Keywords: Graph theory, radio channel assignment, radio k-labeling,
Cartesian product, radio number, antipodal number.

1 Introduction

In wireless networks, an important task is the management of the radio
spectrum, that is the assignment of radio frequencies to transmitters in a
way that avoid interferences. Interferences can occur if transmitters with
close locations receive close frequencies. The problem, often modeled as
a coloring problem on the graph where vertices represent by transmitters
and edges indicate closeness of the transmitters, has been studied by several
authors under different scenarios.
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In this paper, we study the radio k-labeling problem defined by Char-
trand et al. [2, 3]. Formally, for a graph G = (V,E), we denote by dG(x, y)
the distance between two vertices x and y, and by D(G) the diameter of G.
A radio k-labeling of G is a function f : V → N such that for every two
distinct vertices x and y of G the following is satisfied :

|f(x)− f(y)| ≥ k + 1− dG(x, y).

The span of the function f denoted by λk(f), is max{f(x) − f(y) : x, y ∈
V (G)} . The radio k-chromatic number λk(G) of G is the minimum span of
all radio k-labelings of G.

Determining the radio k-chromatic number seems to be a difficult task,
even for particular graphs. For instance, the radio k-chromatic number
for paths was studied in [3, 6], where lower and upper bounds were given.
Radio labelings for particular values of k were also considered: the radio
k-chromatic number of paths and cycles is studied for k = D(G) − 1 in
[1, 2] known as radio antipodal number and for k = D(G) in [12] known
as radio number. The radio number of trees and square of paths has been
studied in [10, 11]. Recently, the radio antipodal number of the hypercube
was determined [8].

Notice that, although the authors in [3] only consider radio k-labelings
for k ≤ D(G), one can also consider the case k > D(G). The motivation
behind the study of the case k > D(G) is of two kinds: first this case seems
less difficult to study than the case k ≤ D(G) and secondly, computing the
radio k-chromatic number of a graph for k ≥ D(G) can help to compute the
radio k-labeling number of other graphs with larger diameter, as it is done
in [6].

For the Cartesian product, we use the notation from [5] : The Cartesian
product G2G′ of two graphs G and G′ is the graph with vertex set V (G)×
V (G′) and edge set {(xi, uj)(xi′ , uj′)| i = i′ and ujuj′ ∈ E(G′), or xixi′ ∈
E(G) and j = j′}. Therefore, to each vertex uj of G′ corresponds a copy
Gj of G in G2G′, with 1 ≤ j ≤ |V (G)|.

As shown in [6], the radio k-chromatic number is related to two other
graph parameters: the upper Hamiltonian number [9] of a graph G, denoted

by h+(G), is the maximum of
n−1∑
i=0

dG(π(i+1), π(i)), over all cyclic permuta-

tions π of the vertices of G. The upper traceable number, denoted by t+(G),
is obtained from h+(G) by ignoring the distance between the first and the

last vertex: t+(G) = max
π

n−2∑
i=0

dG(π(i + 1), π(i)).

Král et al. in [9] showed that the problem of determining the upper
Hamiltonian number of a graph is NP -hard. The same method can be used
to prove that computing the upper traceable number is also an NP -hard
problem.
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We shall use the following results from [6], which present a lower bound
and an upper bound on the radio k-chromatic number of a graph G in terms
of the parameter t+(G) and of the chromatic number χ(Gk) of the kth power
Gk of G (i.e. the graph with the same vertex set as G and with edges between
vertices at distance at most k in G).

Theorem 1 ([6]). Let G be a graph of order n, then for any positive integer
k,

λk(G) ≥ (n− 1)(k + 1)− t+(G);

Moreover, if k ≥ 2D(G)− 2, then

λk(G) = (n− 1)(k + 1)− t+(G).

Theorem 2 ([6]). For any graph G and any integer k ≥ 1,

λk(G) ≤ k(χ(Gk)− 1).

The aim of this paper is to find relations between the radio k-chromatic
number of the Cartesian products of two graphs, and some (other) coloring
parameters on the factors. In Section 2, we propose general upper bounds for
the radio k-chromatic number for the product of two graphs. In Section 3,
we find more refined results for the product of a graph and a path. Applying
these results, we present in Section 4 upper and lower bounds for the radio
k-chromatic number of the hypercube and of the grid. In particular, for the
radio antipodal and radio numbers of the grid, the ratio of the upper and
lower bounds is small (asymptotically equal to 3

2).

2 Radio k-labelings of the Cartesian product of
two graphs

In this section we give general bounds for the radio k-chromatic number of
the Cartesian product of two graphs G and G′.

Theorem 3. For any two graphs G and G′ of order n ≥ 2 and m respec-
tively, and for any integer k ≥ D(G2G′)− 1,

λk(G2G′) ≤ mλk(G) + (m− 1)k − t+(G′).

Proof. Let f be a radio k-labeling of G with λk(f) = λk(G).
Let x0, x1, . . . , xn−1 be an ordering of the vertices of G such that f(xi) ≤

f(xi+1) and let u0, u1, . . . , um−1 be an ordering of the vertices of G′ such

that
m−2∑
i=0

dG′(ui+1, ui) = t+(G′).

For each vertex ui of G′ we associate a copy Gi of G in G2G′, where
V (Gi) = {X0

i , X1
i , . . . , Xn−1

i } with Xj
i = (xj , ui). With this notation, we

have dG2G′(Xj
i , Xj′

i′ ) = dG(xj , xj′) + dG′(ui, ui′).
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Therefore, we can define a labeling g of G2G′ by setting


g(Xj

0) = f(xj), for 0 ≤ j ≤ n− 1,
g(X0

i ) = g(Xn−1
i−1 ) + k + 1− dG2G′(X0

i , Xn−1
i−1 ), for 1 ≤ i ≤ m− 1,

g(Xj
i ) = g(X0

i ) + g(Xj
0), for 1 ≤ j ≤ n− 1; 1 ≤ i ≤ m− 1.

The maximum label used is

g(Xn−1
m−1) = g(X0

m−1)+g(Xn−1
0 ) = g(Xn−1

m−2)+λk(G)+k+1−dG2G′(X0
m−1, X

n−1
m−2),

and thus

g(Xn−1
m−1) = mλk(G) + (m− 1)(k + 1)−

m−2∑
p=0

dG2G′(X0
p+1, X

n−1
p ).

As n ≥ 2, then
m−2∑
p=0

dG2G′(X0
p+1, X

n−1
p ) ≥

m−2∑
p=0

(1 + dG′(up+1, up)) = m− 1 +

t+(G′) because x0 6= xn−1. Consequently

g(Xn−1
m−1) ≤ mλk(G) + (m− 1)k − t+(G′).

Now, we show that g is a radio k-labeling of G2G′ by checking the distance
condition for each pair of vertices in G2G′: we want

|g(Xj
i )− g(Xj′

i′ )| ≥ k + 1− dG2G′(Xj
i , Xj′

i′ ).

Case 1: If the two vertices are in the same copy Gi of G2G′, then the
difference between their labels given by g is the same as that between the
corresponding two vertices in G0:

|g(Xj
i )− g(Xj′

i )| = |g(X0
i ) + g(Xj

0)− (g(X0
i ) + g(Xj′

0 ))|
= |g(Xj

0)− g(Xj′

0 )|
= |f(xj)− f(xj′)|
≥ k + 1− dG(xj , xj′).

As dG2G′(Xj
i , Xj′

i ) = dG(xj , xj′), we obtain

|g(Xj
i )− g(Xj′

i )| ≥ k + 1− dG2G′(Xj
i , Xj′

i ).

Case 2: If the two vertices are not in the same copy of G2G′, then we just
check the distance condition between two vertices Xj

i+1 and Xj′

i which are
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in two successive copies Gi+1 and Gi respectively. We have

|g(Xj
i+1)− g(Xj′

i )| = |g(X0
i+1) + g(Xj

0)− g(Xj′

i )|
= |g(Xn−1

i ) + k + 1− dG2G′(X0
i+1, X

n−1
i ) + g(Xj

0)− g(Xj′

i )|
≥ g(Xn−1

i )− g(Xj′

i ) + g(Xj
0) (because we have k ≥ D(G2G′)− 1)

≥ g(Xn−1
0 )− g(Xj′

0 ) + g(Xj
0)

≥ g(Xj
0)− g(Xj′

0 )
≥ f(xj)− f(xj′)
≥ k + 1− dG(xj , xj′)
≥ k + 1− dG2G′(Xj

i+1, X
j′

i ).

Thus g is a radio k-labeling and λk(G2G′) ≤ mλk(G)+(m−1)k−t+(G′).

We now give another upper bound for the radio k-chromatic number of
the Cartesian product which is valid for any k ≥ 2.

Theorem 4. For any two graphs G and G′ of order n and m respectively
and for any integer k ≥ 2,

λk(G2G′) ≤ χ(G′k)(λk(G) + k − 1)− k + 1.

Proof. Let f be a radio k-labeling of G with λk(f) = λk(G) and let x0, x1, . . . , xn−1

be an ordering of the vertices of G such that f(xi) ≤ f(xi+1).
Let c be a proper vertex-coloring of G′k with colors from {0, 1, . . . , χ(G′k)−

1}. Denote the vertices of G′ by uj , 0 ≤ j ≤ m− 1.
Consider the labeling g of G2G′ given by

g((xi, uj)) = f(xi) + c(uj)(λk(G) + k − 1).

The maximal label used by g is χ(G′k)(λk(G) + k− 1)− k + 1. To show
that g is a radio k-labeling of G2G′, we have to check that the distance
condition is satisfied.

Notice that for any two vertices in the same copy Gj of G, the condition
can be easily verified.

Next, two vertices (xi, uj) and (xi′ , uj′) with c(uj) = c(uj′) are at dis-
tance at least k + 1 in G2G′ (since c is a proper coloring of G′k), thus the
condition is also verified for these two vertices.

Finally, for two vertices (xi, uj) and (xi′ , uj′) with c(uj) 6= c(uj′) and
i > i′, we have

|g((xi, uj))−g((xi′ , uj′))| = |f(xi)−f(xi′)+(c(uj)− c(uj′))(λk(G)+k−1)|.

If c(uj) > c(uj′) then

|f(xi)− f(xi′) + (c(uj)− c(uj′))(λk(G) + k − 1)| ≥ f(xi)− f(xi′)
≥ k + 1− dG(xi, xi′)
≥ k + 1− dG2G′((xi, uj), (xi′ , uj′)).
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If c(uj) < c(uj′) then
|f(xi)− f(xi′) + (c(uj)− c(uj′))(λk(G) + k− 1)| = (c(uj′)− c(uj))(λk(G) +
k − 1)− f(xi) + f(xi′), because λk(G) + k − 1− f(xi) + f(xi′) ≥ 0.
Thus,

|g((xi, uj))− g((xi′ , uj′))| ≥ λk(G) + k − 1− (f(xi)− f(xi′))
≥ k + 1− dG2G′((xi, uj), (xi′ , uj′)) + dG2G′((xi, uj), (xi′ , uj′))− 2
+λk(G)− (f(xi)− f(xi′))
≥ k + 1− dG2G′((xi, uj), (xi′ , uj′))

since dG2G′((xi, uj), (xi′ , uj′)) ≥ 2 and f(xi) ≤ λk(G).

3 Radio k-labelings of the products of a graph and
a path

In [12], the value of t+(G) was determined for the path.

Lemma 1 ([12]). For any integer n ≥ 2,

t+(Pn) =
{

1
2n2 − 1 if n is even,
1
2(n2 − 1)− 1 if n is odd.

Then, applying Theorem 3, we obtain:

Theorem 5. For any graph G of order n and for any integers m and k,
with k ≥ D(G) + m− 2,

λk(G2Pm) ≤
{

mλk(G) + (m− 1)k − 1
2(m2 − 1) + 1 if m is odd,

mλk(G) + (m− 1)k − 1
2m2 + 1 if m is even.

Another bound for the product of a graph and a path can be determined
directly:

Theorem 6. For any graph G and for any integer k ≥ 2,

λk(G2Pm) ≤ k(λk(G) + min{k, m− 1}).

Proof. Let f be a radio k-labeling of G such that λk(G) = λk(f). Let
(x0, x1, ..., xn−1) be an ordering of the vertices of G such that f(xi) ≤ f(xi+1)
and let V (Pm) = {0, 1, . . . ,m− 1}.

Now, we construct a labeling g of G2Pm :

g((xi, j)) = k(f(xi) + (j mod k))

In order to show that g is a radio k-labeling, first note that for any j, j′ and
for any xi, xi′ , we have

dG2Pm((xi, j), (xi′ , j
′)) = dG(xi, xi′) + |j − j′|.

Hence, if |j − j′| ≥ k, then the condition |g((xi, j)) − g((xi, j
′))| ≥ k +

1− dG2Pm((xi, j), (xi, j
′)) is satisfied provided that (xi, j) 6= (xi, j

′).
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• For any j 6= j′, |j − j′| < k and for any xi, we have

|g((xi, j))−g((xi, j
′))| = k|(j mod k)−(j′ mod k)| ≥ k ≥ k+1−dG2Pm((xi, j), (xi, j

′)).

• For any j and for any i > i′, we have

|g((xi, j))− g((xi′ , j))| = k|f(xi)− f(xi′)|
≥ |f(xi)− f(xi′)|
≥ k + 1− dG(xi, xi′)
≥ k + 1− dG2Pm((xi, j), (xi′ , j)).

• For any j 6= j′, |j − j′| < k, let jk = (j mod k) and j′k = (j′ mod k).
For any i > i′, we have

|g((xi, j))− g((xi′ , j
′))| = k|f(xi)− f(xi′) + jk − j′k|.

If jk > j′k then,

|g((xi, j))− g((xi′ , j
′))| = k(f(xi)− f(xi′) + jk − j′k)

≥ f(xi)− f(xi′)
≥ k + 1− dG(xi, xi′)
≥ k + 1− dG2Pm((xi, j), (xi′ , j

′)).

If jk < j′k then,
if f(xi)− f(xi′) ≥ j′k − jk, we have,

|g((xi, j))− g((xi′ , j
′))| = k(f(xi)− f(xi′)− (j′k − jk))

≥ f(xi)− f(xi′)− (j′k − jk)
≥ k + 1− dG(xi, xi′)− (j′k − jk)
≥ k + 1− dG(xi, xi′)− (j′ − j)
≥ k + 1− dG2Pm((xi, j), (xi′ , j

′)).

If f(xi)− f(xi′) ≤ j′k − jk, then

|g((xi, j))− g((xi′ , j
′))| = k(j′k − jk − (f(xi)− f(xi′)))

≥ j′k − jk − (f(xi)− f(xi′))
≥ f(xi)− f(xi′)− (j′k − jk)
≥ k + 1− dG(xi, xi′)− (j′k − jk)
≥ k + 1− dG(xi, xi′)− (j′ − j)
≥ k + 1− dG2Pm((xi, j), (xi′ , j

′)).

Thus, for any j, j′ and for any xi, xi′ , we have

|g((xi, j))− g((xi′ , j
′))| ≥ k + 1− dG2Pm((xi, j), (xi′ , j

′)).

Consequently, g is a radio k-labeling of G2Pm and

λk(G2Pm) ≤ λk(g) ≤ k(λk(G) + m− 1).
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4 Radio k-labelings for hypercubes and grids

4.1 Hypercubes

Let Hn be the hypercube of dimension n (Hn = P22 · · ·2P2︸ ︷︷ ︸
n times

).

Lemma 2. For any integer n ≥ 2,

t+(Hn) = 2n−1(2n− 1)− (n− 1).

Proof. First, observe that there are no three vertices x, y, z in Hn such that
dHn(x, y) = dHn(y, z) = n. Thus, the best we can do in order to maximize
the sum of distances between consecutive vertices is to find an ordering of the
vertices such that the distance between consecutive vertices is alternately n
and n− 1.

This can be easily done by considering an Hamiltonian path P of a
subgraph H of Hn isomorphic to Hn−1 (it is straightforward that such a
path exists). The ordering is obtained by taking the first vertex of P , then
its antipodal vertex, then the second vertex of P , its antipodal, and so on.

Therefore,

t+(Hn) =
2n−1∑
i=1

n +
2n−1−1∑

i=1

(n− 1) = 2n−1(2n− 1)− (n− 1).

Theorem 7. For the hypercube Hn of dimension n ≥ 2 and for any k ≥ 2,

(2n − 1)k − 2n−1(2n− 3) + n− 2 ≤ λk(Hn) ≤ (2n − 1)k − 2n−1 + 1.

Moreover, for k ≥ 2n− 2,

λk(Hn) = (2n − 1)k − 2n−1(2n− 3) + n− 2.

Proof. The lower bound is a direct consequence of Theorem 1 and Lemma 2.
To show the upper bound, observe that Hn = Hn−12P2. Thus, applying

Theorem 3 inductively, we obtain

λk(Hn) = λk(Hn−12P2)
≤ 2λk(Hn−1) + k − 1
≤ 22λk(Hn−2) + (k − 1)(2 + 1)
. . .

≤ 2n−1λk(P2) + (k − 1)
n−2∑
i=0

2i

≤ (2n − 1)k − 2n−1 + 1.
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4.2 Grids

Let Mm,n = Pm2Pn denote the 2-dimensional grid.
In this section, we provide upper and lower bounds for the radio k-

chromatic number for the grid Mm,n only in terms of k as given in [3, 6] for
the path.

The k-distance chromatic number of a 2-dimensional grid (or equiva-
lently, the chromatic number of the kth power of the 2-dimensional grid)
was determined in [4]. Using Theorem 2, we obtain an upper bound as
given in the result below:

Theorem 8. For the grid Mm,n and for any integer k > 2,

λk(Mm,n) ≤
{

1
2(k3 + 2k2 − k) if k is odd,
1
2(k3 + 2k2) if k is even.

In order to present a lower bound, we need the following lemma.

Lemma 3. For any integer p ≥ 1,

h+(M2p,2p) ≤ 8p3.

Proof. Let V (M2p,2p) = {(i, j)|0 ≤ i, j ≤ 2p− 1}.
Let N = 4p2 and let X0, · · · , XN−1 be an ordering of V (M2p,2p) such that

h+(M2p,2p) =
N−1∑
J=0

dM2p,2p(XJ , XJ+1). Remark that XJ+1 = (i, j) and XJ =

(i′, j′) for some 0 ≤ i, i′, j, j′ ≤ 2p− 1. Thus, dM2p,2p(XJ , XJ+1) = |i− i′|+

|j − j′|. Therefore, the summation
N−1∑
J=0

dM2p,2p(XJ , XJ+1) consists in 4p2

distances, each distance corresponding to 4 numbers (two with a positive sign
and two with a negative sign). Moreover, each number i ∈ {0, 1, · · · , 2p− 1}
occurs 8p times in the summation.

Consequently, the configuration achieving the maximum summation is
when each number i ∈ {0, 1, . . . , p − 1} occurs 8p times as −i and each of
{p, p + 1, . . . , 2p− 1} occurs 8p times as i. In that case we obtain

N−1∑
J=0

dM2p,2p(XJ , XJ+1) ≤ 8p(
2p−1∑
i=p

i−
p−1∑
i=0

i)

= 8p(
p−1∑
i=0

p)

= 8p3

Theorem 9. For any positive integer k and for any integer p ≥ 1,

λk(M2p,2p) ≥ 4p2(k − 2p + 1)− k.
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Proof. The result follows by combining Theorem 1 and Lemma 3, using the
fact that t+(M2p,2p) ≤ h+(M2p,2p)− 1.

Theorem 10. For the grid Mm,n and for any integer k ≥ 2 with min{m,n} ≥
2dk

3e,

λk(Mm,n) ≥ 4
27

(k3 + 3k2)− k − 16
27

.

Proof. It is easily seen that for any integers m,n,m′, n′ such that m′ ≥ m
and n′ ≥ n then λk(Mm′,n′) ≥ λk(Mm,n) since any radio k-labeling of Mm′,n′

provides a radio k-labeling of Mm,n.
The lower bound is obtained by setting p = dk

3e in Theorem 9 (we chose
this value of p in order to maximize the expression 4p2(k − 2p + 1)− k).

If k ≡ 0 mod 3 then p = k
3 and λk(M2p,2p) ≥ 4

27k2(k + 3)− k ≥ 4
27(k3 +

3k2)− k − 16
27 .

If k ≡ 1 mod 3 then p = k+2
3 and λk(M2p,2p) ≥ 4

27(k + 2)2(k − 1)− k =
4
27(k3 + 3k2)− k − 16

27 .
If k ≡ 2 mod 3 then p = k+1

3 and λk(M2p,2p) ≥ 4
27(k + 1)3 − k ≥ 4

27(k3 +
3k2)− k − 16

27 .

Using Theorem 5 and the following theorem in [6], we obtain another
upper bound for the grid Mn,n.

Theorem 11 ([6]). For the path Pn of order n ≥ 2,

λk(Pn) =
{

(n− 1)k − 1
2(n− 1)2 + 1 if n is odd and k ≥ n− 2,

(n− 1)k − 1
2n(n− 2) if n is even and k ≥ n− 1.

Proposition 1. For the grid Mn,n = Pn2Pn of order n2 and for any k ≥
2n− 3,

λk(Mn,n) ≤
{

(n2 − 1)k − 1
2(n− 1)(n2 − 1) + 2 if n is odd,

(n2 − 1)k − 1
2n2(n− 1) + 1 if n is even.

In particular, for k = D(Mn,n) − 1 and k = D(Mn,n) the above results
give bounds for the radio antipodal number and radio number of Mn,n. The
ratio of the upper and lower bounds is asymptotically equal to 3

2 .

Proposition 2. The radio antipodal number of the mesh Mn,n satisfies

n3 − 3n2 + n + 2 ≤ λ2n−3(Mn,n) ≤ 3
2
n3 − 5

2
n2 − 3

2
n +

9
2
.

Proposition 3. The radio number of the mesh Mn,n satisfies

n3 − 2n2 − n + 2 ≤ λ2n−2(Mn,n) ≤ 3
2
(n3 − n2 − n +

7
3
).
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Conclusion

We have presented several bounds for the radio k-chromatic number of the
Cartesian product of graphs. Although it seems difficult to judge sharpness
of the bounds, we have shown in Section 4 that for some values of k near
the diameter of the graph, some of the bounds proposed are relatively close
to the optimal. Moreover, this study is among the first to consider radio k-
labeling of graphs different from a path or a cycle. An interesting question
is to know if the radio k-chromatic number of a graph G is closer to the
chromatic number of the graph Gk than to k times this number.
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