
A Note on Radio Antipodal Colourings of Paths

Riadh Khennoufa and Olivier Togni ∗

LE2I, UMR 5158 CNRS, Université de Bourgogne
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Abstract

The radio antipodal number of a graph G is the smallest integer c
such that there exists an assignment f : V (G) → {1, 2, . . . , c} satisfying
|f(u) − f(v)| ≥ D − d(u, v) for every two distinct vertices u and v of G,
where D is the diameter of G. In this note we determine the exact value
of the antipodal number of the path, thus answering the conjecture given
in [G. Chartrand, D. Erwin, and P. Zhang. Radio antipodal colorings of
graphs, Math. Bohem. 127(1):57–69, 2002]. We also show the connections
between this colouring and radio labelings.
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1 Introduction

Let G be a connected graph and let k be an integer, k ≥ 1. The distance
between two vertices u and v of G is denoted by d(u, v) and the diameter of G
by D(G) or simply D. A radio k-colouring f of G is an assignment of positive
integers to the vertices of G such that

|f(u)− f(v)| ≥ 1 + k − d(u, v)

for every two distinct vertices u and v of G.
Following the notation of [1, 3], we define the radio k-colouring number rck(f)

of a radio k-colouring f of G to be the maximum colour assigned to a vertex of
G and the radio k-chromatic number rck(G) to be min{rck(f)} taken over all
radio k-colourings f of G.

Radio k-colourings generalize many graph colourings. For k = 1, rc1(G) =
χ(G), the chromatic number of G. For k = 2, the radio 2-colouring problem
corresponds to the well studied L(2, 1)−colouring problem and rc2(G) = λ(G)
(see [5] and references therein). For k = D(G)− 1, the radio (D− 1)−colouring
is referred to as the radio antipodal colouring, because only antipodal vertices
can have the same colour. In that case, rck(G) is called the radio antipodal
number, also denoted by ac(G). Finally, for the case k = D(G), rck(G) is called
the radio number and is studied in [1, 6].
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In [2] the antipodal number for cycles was discussed and bounds were given.
In [3], Chartrand et al. gave general bounds for the antipodal number of a
graph. The authors proved the following result for the radio antipodal number
of the path:

Theorem 1 ([3]) For every positive integer n,

ac(Pn) ≤
(

n− 1
2

)
+ 1.

Moreover, they conjectured that the above upper bound is the value of the
antipodal number of the path. In [4], the authors found a sharper bound for the
antipodal number of an odd path (thus showing that the conjecture was false):

Theorem 2 ([4]) For the path Pn of odd order n ≥ 7,

ac(Pn) ≤
(

n− 1
2

)
− n− 1

2
+ 4.

In this note we completely determine the antipodal number of the path:

Theorem 3 For any n ≥ 5,

ac(Pn) =
{

2p2 − 2p + 3 if n = 2p + 1,
2p2 − 4p + 5 if n = 2p.

Notice that for n = 2p+1 we have (
n− 1

2 )− n−1
2 +4 = p(2p−1)−p+4 =

2p2 − 2p + 4, thus the bound of Theorem 2 is one from the optimal.
Examples of minimal antipodal colourings of P7 and P8 are given in Figure 1.

11 4

4 16 9 21 1 13 6 18

8 1 12 515

Figure 1: Antipodal colouring of P7 and P8.

In order to prove Theorem 3, we shall use a result of Liu and Zhu [6] about
the radio number of the path. Notice that Liu and Zhu allow 0 to be used as
a colour but we do not. Then, when presenting their result, we will make the
necessary adjustment (adding ”one”) to be consistent with the rest of the paper.

Theorem 4 ([6]) For any n ≥ 3

rcn−1(Pn) =
{

2p2 + 3 if n = 2p + 1,
2p2 − 2p + 2 if n = 2p.
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2 Radio k-colourings

Lemma 1 Let G be a graph of order n and let k be an integer. If f is a radio
k-colouring of G then, for any integer k′ > k, there exists a radio k′-colouring
f ′ of G with rck′(f ′) ≤ rck(f) + (n− 1)(k′ − k).

Proof : We construct a radio k′-colouring f ′ of G with rck′(f ′) = c + (n −
1)(k′ − k) from a radio k-colouring f with rck(f) = c in the following way: Let
x1, x2, . . . , xn be an ordering of the vertices of G such that f(xi) ≤ f(xi+1), 1 ≤
i ≤ n− 1, and set

f ′(xi) = f(xi) + (i− 1)(k′ − k).

For any two integers i and j, 1 ≤ i < j ≤ n, we have |f ′(xj) − f ′(xi)| =
|f(xj)− f(xi)|+ (j − i)(k′ − k).

As |f(xj)− f(xi)| ≥ 1 + k − d(xj , xi) and j − i ≥ 1, we obtain
|f ′(xj) − f ′(xi)| ≥ 1 + k + (j − i)(k′ − k) − d(xj , xi) ≥ 1 + k′ − d(xj , xi).

Thus f ′ is a radio k′-colouring of G and rck′(f ′) = c + (n− 1)(k′ − k). 2

The above result can be strengthened a little in some cases:

Lemma 2 Let G be a graph of order n and let k, k′ be integers, k′ > k. Given
a radio k-colouring f of G, let x1, x2, . . . , xn be an ordering of the vertices of G
such that f(xi) ≤ f(xi+1), 1 ≤ i ≤ n − 1 and let εi = |f(xi) − f(xi−1)| − (1 +
k − d(xi, xi−1)), 2 ≤ i ≤ n. Consider a set I = {i1, i2, . . . , is} ⊂ {2, . . . , n},
where 1 ≤ s ≤ n− 1, such that ij+1 > ij + 1 for all j, 1 ≤ j ≤ s− 1. Then there
exists a radio k′-colouring f ′ of G with rck′(f ′) ≤ rck(f) + (n − 1)(k′ − k) −∑

i∈I min(k′ − k, εi).

Proof : A radio k′-colouring f ′ of G is obtained simply by setting for all j with
1 ≤ j ≤ n− 1:

f ′(xj) = f(xj) + (j − 1)(k′ − k)−
∑

i∈I,i≤j

min(k′ − k, εi).

The vertex xn has the maximum colour: f ′(xn) = f(xn) + (n− 1)(k′− k)−∑
i∈I min(k′ − k, εi) = rck(f) + (n− 1)(k′ − k)−

∑
i∈I min(k′ − k, εi).

Then, for any two integers j1 and j2, 1 ≤ j1 < j2 ≤ n, let us show that the
condition

|f ′(xj2)− f ′(xj1)| ≥ 1 + k′ − d(xj2 , xj1)

is verified, i.e. that

|f(xj2)−f(xj1)|+(j2−j1)(k′−k)−
∑

i∈I,j1<i≤j2

min(k′−k, εi) ≥ 1+k′−d(xj2 , xj1).

If j2 = j1 + 1, then |f(xj2) − f(xj1)| = 1 + k − d(xj2 , xj1) + εj2 . Thus
|f ′(xj2) − f ′(xj1)| ≥ 1 + k − d(xj2 , xj1) + εj2 + (k′ − k) − min(k′ − k, εj2) ≥
1 + k′ − d(xj2 , xj1).

If j2 > j1 + 1, then
∑

i∈I,j1<i≤j2
min(k′ − k, εi) ≤ (j2 − j1 − 1)(k′ − k)

since by the hypothesis there are no two consecutive integers in the set I. Thus
|f ′(xj2)−f ′(xj1)| ≥ 1+k−d(xj2 , xj1)+(j2− j1)(k′−k)− (j2− j1−1)(k′−k) =
1 + k′ − d(xj2 , xj1).

Therefore, f ′ is a radio k′-colouring of G and rck′(f ′) = rck(f)+(n−1)(k′−
k)−

∑
i∈I min(k′ − k, εi). 2
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3 Antipodal colourings of paths

Theorem 3 derives from the next two theorems.

Theorem 5 For any n ≥ 5,

ac(Pn) ≤
{

2p2 − 2p + 3 if n = 2p + 1,
2p2 − 4p + 5 if n = 2p.

Proof : The fact that ac(P5) = 7 is easily checked (see [3]). Thus take n ≥ 6
and let Pn = (u1, u2, . . . , un). We consider two cases depending on whether n
is even or odd.

Case 1. n = 2p + 1 is odd for an integer p ≥ 3. Define a colouring f of P2p+1

by 

f(u1) = 3p + 2,
f(u2) = p + 1,
f(ui) = i(2p− 1)− p + 3 3 ≤ i ≤ p,
f(up+1) = 2p + 2,
f(up+2) = 1,
f(up+i) = i(2p− 1)− 2p + 3 3 ≤ i ≤ p,
f(u2p+1) = p + 2.

Then the vertex up has the maximum colour: f(up) = p(2p − 1) − p + 3 =
2p2 − 2p + 3. We only have to show that the distance condition is verified for
two vertices ui and up+j , 3 ≤ i, j ≤ p (the other cases can be easily checked).
We want

|f(up+j)− f(ui)| ≥ 1 + (D − 1)− d(up+j , ui) ⇔
|j(2p− 1)− 2p + 3− (i(2p− 1)− p + 3)| ≥ 2p− (p + j − i) ⇔
|(j − i)(2p− 1)− p| ≥ p− j + i.

If j − i ≥ 1 then |(j − i)(2p − 1) − p| = (j − i)(2p − 1) − p ≥ 2p − 1 − p =
p− 1 ≥ p− j + i.

If j−i < 1 then |(j−i)(2p−1)−p| = −(j−i)(2p−1)+p = (i−j)(2p−1)+p ≥
p− j + i for p ≥ 1.

Case 2. n = 2p is even for an integer p ≥ 3. Define a colouring f of P2p by
f(u1) = p,
f(ui) = (p− i)(2p− 1) + 2 2 ≤ i ≤ p− 1,
f(up) = 2p2 − 4p + 5,
f(up+i) = 2p2 − 4p + 6− f(up−i+1) 1 ≤ i ≤ p.

Then the vertex up has the maximum colour: f(up) = 2p2 − 4p + 5. We
only have to show that the distance condition is verified for two vertices ui and
up+j , 2 ≤ i ≤ p− 1, 1 ≤ j ≤ p (the other cases can be easily checked). We want

|f(up+j)− f(ui)| ≥ 1 + (D − 1)− d(up+j , ui) ⇔
|(p− j)(2p− 1) + 3− ((p− i)(2p− 1)− p + 2)| ≥ 2p− 1− (p + j − i) ⇔
|(i− j)(2p− 1) + p + 1| ≥ p− j + i− 1.
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If i−j ≥ 0 then |(i−j)(2p−1)+p+1| = (i−j)(2p−1)+p+1 ≥ p−j + i−1
since (i− j)(2p− 2) ≥ −1 for p ≥ 1.

If i−j < 0, i.e. if j−i ≥ 1 then |(i−j)(2p−1)+p+1| = (j−i)(2p−1)−p−1 ≥
p− j + i− 1 since 2p(j − i) ≥ 2p. 2

Theorem 6 For any n ≥ 5,

ac(Pn) ≥
{

2p2 − 2p + 3 if n = 2p + 1,
2p2 − 4p + 5 if n = 2p.

Proof : for n = 2p + 1, by Lemma 1 we have rcn−1(Pn) ≤ ac(Pn) + (n − 1).
This together with Theorem 4 gives ac(P2p+1) ≥ 2p2 + 3− 2p.

For n = 2p, let D = D(P2p) = 2p − 1. We will use Lemma 2 with the
radio (D − 1)-colouring f of P2p described in the proof of Theorem 5 and with
k = D−1 = 2p−1 and k′ = D = 2p. Keeping the notation of Lemma 2, one can
see that f is such that x1 = up+1, x2 = u1, x3 = u2p−1, x4 = up−1, . . . , x2j+1 =
u2p−j+1, x2j = up−j+1, . . . , x2p−1 = u2p, x2p = up. Thus ε3 verifies

ε3 = |f(x3)− f(x2)| − (1 + k − d(x3, x2))
= |f(u2p−1)− f(u1)| − (1 + 2p− 2− (2p− 2))
= |2p2 − 4p + 6− f(u2)− f(u1)| − 1
= |2p2 − 4p + 6− (p− 2)(2p− 1)− 2− p| − 1
= 1.

A similar calculus gives ε2p−1 = 1 and εi = 0 for all other indices.
Thus, as k′− k = 1 and p ≥ 3, applying Lemma 2 with I = {3, 2p− 1} gives

rc2p−1(P2p) ≤ ac(P2p) + (2p− 1)− ε3 − ε2p−1,

that is
ac(P2p) ≥ rc2p−1(P2p)− (2p− 1) + ε3 + ε2p−1.

By virtue of Theorem 4 we obtain ac(P2p) ≥ 2p2 − 2p + 2− (2p− 1) + 1 + 1 =
2p2 − 4p + 5. 2
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