A Note on Radio Antipodal Colourings of Paths

Riadh Khennoufa and Olivier Togni *
LE2I, UMR 5158 CNRS, Université de Bourgogne
BP 47870, 21078 Dijon cedex, France

Revised version:September 9, 2005

Abstract

The radio antipodal number of a graph G is the smallest integer c such that there exists an assignment $f: V(G) \rightarrow\{1,2, \ldots, c\}$ satisfying $|f(u)-f(v)| \geq D-d(u, v)$ for every two distinct vertices u and v of G, where D is the diameter of G. In this note we determine the exact value of the antipodal number of the path, thus answering the conjecture given in [G. Chartrand, D. Erwin, and P. Zhang. Radio antipodal colorings of graphs, Math. Bohem. 127(1):57-69, 2002]. We also show the connections between this colouring and radio labelings.

Keywords: radio antipodal colouring, radio number, distance labeling Classification (MSC 2000): 05C78, 05C12, 05C15

1 Introduction

Let G be a connected graph and let k be an integer, $k \geq 1$. The distance between two vertices u and v of G is denoted by $d(u, v)$ and the diameter of G by $D(G)$ or simply D. A radio k-colouring f of G is an assignment of positive integers to the vertices of G such that

$$
|f(u)-f(v)| \geq 1+k-d(u, v)
$$

for every two distinct vertices u and v of G.
Following the notation of $[1,3]$, we define the radio k-colouring number $\mathrm{rc}_{k}(f)$ of a radio k-colouring f of G to be the maximum colour assigned to a vertex of G and the radio k-chromatic number $\operatorname{rc}_{k}(G)$ to be $\min \left\{\operatorname{rc}_{k}(f)\right\}$ taken over all radio k-colourings f of G.

Radio k-colourings generalize many graph colourings. For $k=1, \mathrm{rc}_{1}(G)=$ $\chi(G)$, the chromatic number of G. For $k=2$, the radio 2 -colouring problem corresponds to the well studied $L(2,1)$-colouring problem and $\mathrm{rc}_{2}(G)=\lambda(G)$ (see [5] and references therein). For $k=D(G)-1$, the radio ($D-1$)-colouring is referred to as the radio antipodal colouring, because only antipodal vertices can have the same colour. In that case, $\operatorname{rc}_{k}(G)$ is called the radio antipodal number, also denoted by $\operatorname{ac}(G)$. Finally, for the case $k=D(G), \mathrm{rc}_{k}(G)$ is called the radio number and is studied in $[1,6]$.
*corresponding author, email:olivier.togni@u-bourgogne.fr

In [2] the antipodal number for cycles was discussed and bounds were given. In [3], Chartrand et al. gave general bounds for the antipodal number of a graph. The authors proved the following result for the radio antipodal number of the path:

Theorem 1 ([3]) For every positive integer n,

$$
\operatorname{ac}\left(P_{n}\right) \leq\binom{ n-1}{2}+1
$$

Moreover, they conjectured that the above upper bound is the value of the antipodal number of the path. In [4], the authors found a sharper bound for the antipodal number of an odd path (thus showing that the conjecture was false):

Theorem 2 ([4]) For the path P_{n} of odd order $n \geq 7$,

$$
\operatorname{ac}\left(P_{n}\right) \leq\binom{ n-1}{2}-\frac{n-1}{2}+4 .
$$

In this note we completely determine the antipodal number of the path:
Theorem 3 For any $n \geq 5$,

$$
\operatorname{ac}\left(P_{n}\right)= \begin{cases}2 p^{2}-2 p+3 & \text { if } n=2 p+1 \\ 2 p^{2}-4 p+5 & \text { if } n=2 p\end{cases}
$$

Notice that for $n=2 p+1$ we have $\binom{n-1}{2}-\frac{n-1}{2}+4=p(2 p-1)-p+4=$ $2 p^{2}-2 p+4$, thus the bound of Theorem 2 is one from the optimal.

Examples of minimal antipodal colourings of P_{7} and P_{8} are given in Figure 1.

Figure 1: Antipodal colouring of P_{7} and P_{8}.

In order to prove Theorem 3, we shall use a result of Liu and Zhu [6] about the radio number of the path. Notice that Liu and Zhu allow 0 to be used as a colour but we do not. Then, when presenting their result, we will make the necessary adjustment (adding "one") to be consistent with the rest of the paper.

Theorem 4 ([6]) For any $n \geq 3$

$$
\mathrm{rc}_{n-1}\left(P_{n}\right)= \begin{cases}2 p^{2}+3 & \text { if } n=2 p+1 \\ 2 p^{2}-2 p+2 & \text { if } n=2 p\end{cases}
$$

2 Radio k-colourings

Lemma 1 Let G be a graph of order n and let k be an integer. If f is a radio k-colouring of G then, for any integer $k^{\prime}>k$, there exists a radio k^{\prime}-colouring f^{\prime} of G with $\mathrm{rc}_{k^{\prime}}\left(f^{\prime}\right) \leq \operatorname{rc}_{k}(f)+(n-1)\left(k^{\prime}-k\right)$.

Proof : We construct a radio k^{\prime}-colouring f^{\prime} of G with $\operatorname{rc}_{k^{\prime}}\left(f^{\prime}\right)=c+(n-$ $1)\left(k^{\prime}-k\right)$ from a radio k-colouring f with $\operatorname{rc}_{k}(f)=c$ in the following way: Let $x_{1}, x_{2}, \ldots, x_{n}$ be an ordering of the vertices of G such that $f\left(x_{i}\right) \leq f\left(x_{i+1}\right), 1 \leq$ $i \leq n-1$, and set

$$
f^{\prime}\left(x_{i}\right)=f\left(x_{i}\right)+(i-1)\left(k^{\prime}-k\right)
$$

For any two integers i and $j, 1 \leq i<j \leq n$, we have $\left|f^{\prime}\left(x_{j}\right)-f^{\prime}\left(x_{i}\right)\right|=$ $\left|f\left(x_{j}\right)-f\left(x_{i}\right)\right|+(j-i)\left(k^{\prime}-k\right)$.

As $\left|f\left(x_{j}\right)-f\left(x_{i}\right)\right| \geq 1+k-d\left(x_{j}, x_{i}\right)$ and $j-i \geq 1$, we obtain
$\left|f^{\prime}\left(x_{j}\right)-f^{\prime}\left(x_{i}\right)\right| \geq 1+k+(j-i)\left(k^{\prime}-k\right)-d\left(x_{j}, x_{i}\right) \geq 1+k^{\prime}-d\left(x_{j}, x_{i}\right)$. Thus f^{\prime} is a radio k^{\prime}-colouring of G and $\operatorname{rc}_{k^{\prime}}\left(f^{\prime}\right)=c+(n-1)\left(k^{\prime}-k\right)$.

The above result can be strengthened a little in some cases:
Lemma 2 Let G be a graph of order n and let k, k^{\prime} be integers, $k^{\prime}>k$. Given a radio k-colouring f of G, let $x_{1}, x_{2}, \ldots, x_{n}$ be an ordering of the vertices of G such that $f\left(x_{i}\right) \leq f\left(x_{i+1}\right), 1 \leq i \leq n-1$ and let $\epsilon_{i}=\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|-(1+$ $\left.k-d\left(x_{i}, x_{i-1}\right)\right), 2 \leq i \leq n$. Consider a set $I=\left\{i_{1}, i_{2}, \ldots, i_{s}\right\} \subset\{2, \ldots, n\}$, where $1 \leq s \leq n-1$, such that $i_{j+1}>i_{j}+1$ for all $j, 1 \leq j \leq s-1$. Then there exists a radio k^{\prime}-colouring f^{\prime} of G with $\operatorname{rc}_{k^{\prime}}\left(f^{\prime}\right) \leq \operatorname{rc}_{k}(f)+(n-1)\left(k^{\prime}-k\right)-$ $\sum_{i \in I} \min \left(k^{\prime}-k, \epsilon_{i}\right)$.
Proof: A radio k^{\prime}-colouring f^{\prime} of G is obtained simply by setting for all j with $1 \leq j \leq n-1$:

$$
f^{\prime}\left(x_{j}\right)=f\left(x_{j}\right)+(j-1)\left(k^{\prime}-k\right)-\sum_{i \in I, i \leq j} \min \left(k^{\prime}-k, \epsilon_{i}\right) .
$$

The vertex x_{n} has the maximum colour: $f^{\prime}\left(x_{n}\right)=f\left(x_{n}\right)+(n-1)\left(k^{\prime}-k\right)-$ $\sum_{i \in I} \min \left(k^{\prime}-k, \epsilon_{i}\right)=\mathrm{rc}_{k}(f)+(n-1)\left(k^{\prime}-k\right)-\sum_{i \in I} \min \left(k^{\prime}-k, \epsilon_{i}\right)$.

Then, for any two integers j_{1} and $j_{2}, 1 \leq j_{1}<j_{2} \leq n$, let us show that the condition

$$
\left|f^{\prime}\left(x_{j_{2}}\right)-f^{\prime}\left(x_{j_{1}}\right)\right| \geq 1+k^{\prime}-d\left(x_{j_{2}}, x_{j_{1}}\right)
$$

is verified, i.e. that

$$
\left|f\left(x_{j_{2}}\right)-f\left(x_{j_{1}}\right)\right|+\left(j_{2}-j_{1}\right)\left(k^{\prime}-k\right)-\sum_{i \in I, j_{1}<i \leq j_{2}} \min \left(k^{\prime}-k, \epsilon_{i}\right) \geq 1+k^{\prime}-d\left(x_{j_{2}}, x_{j_{1}}\right)
$$

If $j_{2}=j_{1}+1$, then $\left|f\left(x_{j_{2}}\right)-f\left(x_{j_{1}}\right)\right|=1+k-d\left(x_{j_{2}}, x_{j_{1}}\right)+\epsilon_{j_{2}}$. Thus $\left|f^{\prime}\left(x_{j_{2}}\right)-f^{\prime}\left(x_{j_{1}}\right)\right| \geq 1+k-d\left(x_{j_{2}}, x_{j_{1}}\right)+\epsilon_{j_{2}}+\left(k^{\prime}-k\right)-\min \left(k^{\prime}-k, \epsilon_{j_{2}}\right) \geq$ $1+k^{\prime}-d\left(x_{j_{2}}, x_{j_{1}}\right)$.

If $j_{2}>j_{1}+1$, then $\sum_{i \in I, j_{1}<i \leq j_{2}} \min \left(k^{\prime}-k, \epsilon_{i}\right) \leq\left(j_{2}-j_{1}-1\right)\left(k^{\prime}-k\right)$ since by the hypothesis there are no two consecutive integers in the set I. Thus $\left|f^{\prime}\left(x_{j_{2}}\right)-f^{\prime}\left(x_{j_{1}}\right)\right| \geq 1+k-d\left(x_{j_{2}}, x_{j_{1}}\right)+\left(j_{2}-j_{1}\right)\left(k^{\prime}-k\right)-\left(j_{2}-j_{1}-1\right)\left(k^{\prime}-k\right)=$ $1+k^{\prime}-d\left(x_{j_{2}}, x_{j_{1}}\right)$.

Therefore, f^{\prime} is a radio k^{\prime}-colouring of G and $\mathrm{rc}_{k^{\prime}}\left(f^{\prime}\right)=\mathrm{rc}_{k}(f)+(n-1)\left(k^{\prime}-\right.$ $k)-\sum_{i \in I} \min \left(k^{\prime}-k, \epsilon_{i}\right)$.

3 Antipodal colourings of paths

Theorem 3 derives from the next two theorems.

Theorem 5 For any $n \geq 5$,

$$
\operatorname{ac}\left(P_{n}\right) \leq \begin{cases}2 p^{2}-2 p+3 & \text { if } n=2 p+1, \\ 2 p^{2}-4 p+5 & \text { if } n=2 p .\end{cases}
$$

Proof : The fact that $\operatorname{ac}\left(P_{5}\right)=7$ is easily checked (see [3]). Thus take $n \geq 6$ and let $P_{n}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$. We consider two cases depending on whether n is even or odd.

Case 1. $n=2 p+1$ is odd for an integer $p \geq 3$. Define a colouring f of $P_{2 p+1}$ by

$$
\begin{cases}f\left(u_{1}\right)=3 p+2, \\ f\left(u_{2}\right)=p+1, \\ f\left(u_{i}\right)=i(2 p-1)-p+3 & 3 \leq i \leq p \\ f\left(u_{p+1}\right)=2 p+2, & \\ f\left(u_{p+2}\right)=1, & \\ f\left(u_{p+i}\right)=i(2 p-1)-2 p+3 \quad 3 \leq i \leq p, \\ f\left(u_{2 p+1}\right)=p+2\end{cases}
$$

Then the vertex u_{p} has the maximum colour: $f\left(u_{p}\right)=p(2 p-1)-p+3=$ $2 p^{2}-2 p+3$. We only have to show that the distance condition is verified for two vertices u_{i} and $u_{p+j}, 3 \leq i, j \leq p$ (the other cases can be easily checked). We want

$$
\begin{aligned}
& \left|f\left(u_{p+j}\right)-f\left(u_{i}\right)\right| \geq 1+(D-1)-d\left(u_{p+j}, u_{i}\right) \Leftrightarrow \\
& |j(2 p-1)-2 p+3-(i(2 p-1)-p+3)| \geq 2 p-(p+j-i) \Leftrightarrow \\
& |(j-i)(2 p-1)-p| \geq p-j+i .
\end{aligned}
$$

If $j-i \geq 1$ then $|(j-i)(2 p-1)-p|=(j-i)(2 p-1)-p \geq 2 p-1-p=$ $p-1 \geq p-j+i$.

If $j-i<1$ then $|(j-i)(2 p-1)-p|=-(j-i)(2 p-1)+p=(i-j)(2 p-1)+p \geq$ $p-j+i$ for $p \geq 1$.

Case 2. $n=2 p$ is even for an integer $p \geq 3$. Define a colouring f of $P_{2 p}$ by

$$
\begin{cases}f\left(u_{1}\right)=p, & 2 \leq i \leq p-1, \\ f\left(u_{i}\right)=(p-i)(2 p-1)+2 & \\ f\left(u_{p}\right)=2 p^{2}-4 p+5, & 1 \leq i \leq p . \\ f\left(u_{p+i}\right)=2 p^{2}-4 p+6-f\left(u_{p-i+1}\right) & 1,\end{cases}
$$

Then the vertex u_{p} has the maximum colour: $f\left(u_{p}\right)=2 p^{2}-4 p+5$. We only have to show that the distance condition is verified for two vertices u_{i} and $u_{p+j}, 2 \leq i \leq p-1,1 \leq j \leq p$ (the other cases can be easily checked). We want

$$
\begin{aligned}
& \left|f\left(u_{p+j}\right)-f\left(u_{i}\right)\right| \geq 1+(D-1)-d\left(u_{p+j}, u_{i}\right) \Leftrightarrow \\
& |(p-j)(2 p-1)+3-((p-i)(2 p-1)-p+2)| \geq 2 p-1-(p+j-i) \Leftrightarrow \\
& |(i-j)(2 p-1)+p+1| \geq p-j+i-1 .
\end{aligned}
$$

If $i-j \geq 0$ then $|(i-j)(2 p-1)+p+1|=(i-j)(2 p-1)+p+1 \geq p-j+i-1$ since $(i-j)(2 p-2) \geq-1$ for $p \geq 1$.

If $i-j<0$, i.e. if $j-i \geq 1$ then $|(i-j)(2 p-1)+p+1|=(j-i)(2 p-1)-p-1 \geq$ $p-j+i-1$ since $2 p(j-i) \geq 2 p$.

Theorem 6 For any $n \geq 5$,

$$
\operatorname{ac}\left(P_{n}\right) \geq \begin{cases}2 p^{2}-2 p+3 & \text { if } n=2 p+1 \\ 2 p^{2}-4 p+5 & \text { if } n=2 p\end{cases}
$$

Proof : for $n=2 p+1$, by Lemma 1 we have $\operatorname{rc}_{n-1}\left(P_{n}\right) \leq \operatorname{ac}\left(P_{n}\right)+(n-1)$. This together with Theorem 4 gives ac $\left(P_{2 p+1}\right) \geq 2 p^{2}+3-2 p$.

For $n=2 p$, let $D=D\left(P_{2 p}\right)=2 p-1$. We will use Lemma 2 with the radio ($D-1$)-colouring f of $P_{2 p}$ described in the proof of Theorem 5 and with $k=D-1=2 p-1$ and $k^{\prime}=D=2 p$. Keeping the notation of Lemma 2, one can see that f is such that $x_{1}=u_{p+1}, x_{2}=u_{1}, x_{3}=u_{2 p-1}, x_{4}=u_{p-1}, \ldots, x_{2 j+1}=$ $u_{2 p-j+1}, x_{2 j}=u_{p-j+1}, \ldots, x_{2 p-1}=u_{2 p}, x_{2 p}=u_{p}$. Thus ϵ_{3} verifies

$$
\begin{aligned}
\epsilon_{3} & =\left|f\left(x_{3}\right)-f\left(x_{2}\right)\right|-\left(1+k-d\left(x_{3}, x_{2}\right)\right) \\
& =\left|f\left(u_{2 p-1}\right)-f\left(u_{1}\right)\right|-(1+2 p-2-(2 p-2)) \\
& =\left|2 p^{2}-4 p+6-f\left(u_{2}\right)-f\left(u_{1}\right)\right|-1 \\
& =\left|2 p^{2}-4 p+6-(p-2)(2 p-1)-2-p\right|-1 \\
& =1
\end{aligned}
$$

A similar calculus gives $\epsilon_{2 p-1}=1$ and $\epsilon_{i}=0$ for all other indices.
Thus, as $k^{\prime}-k=1$ and $p \geq 3$, applying Lemma 2 with $I=\{3,2 p-1\}$ gives

$$
\mathrm{rc}_{2 p-1}\left(P_{2 p}\right) \leq \operatorname{ac}\left(P_{2 p}\right)+(2 p-1)-\epsilon_{3}-\epsilon_{2 p-1}
$$

that is

$$
\operatorname{ac}\left(P_{2 p}\right) \geq \operatorname{rc}_{2 p-1}\left(P_{2 p}\right)-(2 p-1)+\epsilon_{3}+\epsilon_{2 p-1}
$$

By virtue of Theorem 4 we obtain $\operatorname{ac}\left(P_{2 p}\right) \geq 2 p^{2}-2 p+2-(2 p-1)+1+1=$ $2 p^{2}-4 p+5$.

References

[1] G. Chartrand, D. Erwin, F. Harary, and P. Zhang. Radio labelings of graphs. Bull. Inst. Combin. Appl., 33:77-85, 2001. Zbl 0989.05102
[2] G. Chartrand, D. Erwin, and P. Zhang. Radio antipodal colorings of cycles. Congr. Numerantium 144, 129-141 (2000). Zbl 0976.05028
[3] G. Chartrand, D. Erwin, and P. Zhang. Radio antipodal colorings of graphs. Math. Bohem., 127(1):57-69, 2002. Zbl 0995.05056
[4] G. Chartrand, L. Nebeský, and P. Zhang. Radio k-colorings of paths. Discuss. Math. Graph Theory, 24:5-21, 2004. Zbl 1056.05053
[5] D. Kuo and J-H. Yan. On $L(2,1)$-labelings of Cartesian products of paths and cycles. Discrete Math., 283(1-3):137-144, 2004. Zbl 1043.05104
[6] D. Liu and X. Zhu. Multi-level distance labelings for paths and cycles. SIAM J. Discrete Mathematics, to appear.

