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Abstract

A radio k-labeling of a connected graph G is an assignment f of non
negative integers to the vertices of G such that

|f(x)− f(y)| ≥ k + 1− d(x, y),

for any two vertices x and y, where d(x, y) is the distance between x and
y in G. The radio antipodal number is the minimum span of a radio
(diam(G) − 1)-labeling of G and the radio number is the minimum span
of a radio (diam(G))-labeling of G.

In this paper, the radio antipodal number and the radio number of the
hypercube are determined by using a generalization of binary Gray codes.

Keywords: graph labeling, radio antipodal number, radio number,
generalized binary Gray code.

1 Introduction

Let G be a connected graph and let k be an integer, k ≥ 1. The distance
between two vertices u and v of G is denoted by d(u, v) and the diameter of
G is denoted by diam(G). A radio k-labeling f of G is an assignment of non
negative integers to the vertices of G such that

|f(u)− f(v)| ≥ k + 1− d(u, v),

for every two distinct vertices u and v of G. The span of the function f denoted
by rck(f), is max{f(x) − f(y) : x, y ∈ V (G)}. The radio k-chromatic number
rck(G) of G is the minimum span of all radio k-labelings of G.

Radio k-labelings were introduced by Chartrand et al. [1], motivated by
radio channel assignment problems with interference constraints. Quite few
results are known concerning radio k-labelings. The radio k-chromatic number
for paths was studied in [1], where lower and upper bounds were given. These
bounds have been improved in [8]. Radio k-labelings were also studied in relation
with the Cartesian product of graphs [7].
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Radio k-labelings generalize many other graph labelings. A radio 1-labeling
is a proper vertex-colouring and rc1(G) = χ(G) − 1. For k = 2, the radio 2-
labeling problem corresponds to the well studied L(2, 1)-labeling problem (see
for instance [6, 10] and references therein). Large values of k (close to the
diameter of the graph) were also considered for radio k-labelings.

For k = diam(G)− 1, a radio k-labeling is referred to as a (radio) antipodal
labeling, because only antipodal vertices can have the same label. The minimum
span of an antipodal labeling is called the (radio) antipodal number, denoted by
an(G). Radio antipodal labelings were first studied by Chartrand et al. in [1, 2]
where bounds for the antipodal number for path and cycles were given. In [3]
Chartrand et al., gave general bounds for the antipodal number of a graph. In
[9], the authors determined the exact value of the radio antipodal number of
paths. Recently, Justie and Liu have almost completely determined the radio
antipodal number of the cycle [12].

A radio k-labeling with k = diam(G) is known as a radio labeling (or multi-
level distance labeling in [14]). The minimum span of a radio labeling is called
the radio number, denoted by rn(G). For paths and cycles, the radio number was
studied by Chartrand et al. [4] and by Zhang [16] and completely determined
by Liu and Zhu [14]. The radio number for square of paths and of cycles was
investigated by Liu and Xie [11, 13]. More recently, Liu have studied the radio
number of trees [15].

Notice that the authors of [1, 2, 3, 4] assume that the labels (colours) are
positive. However, when speaking about labelings in relation with frequency
assignment, it is more common to use non negative integers as labels. Thus the
notation of the present paper follows the terminology of [14, 11, 13, 12] in which
vertices are labelled by non negative integers.

The hypercube Qn of dimension n has binary n-bit strings as vertex set,
two vertices being adjacent if the corresponding strings differ on exactly one
position.

Upper and lower bounds for the radio k-chromatic number of the hypercube
Qn were given in [7].

Theorem 1 ([7]). For the hypercube Qn of dimension n ≥ 2 and for any k ≥ 2,

(2n − 1)k − 2n−1(2n− 3) + n− 2 ≤ rck(Qn) ≤ (2n − 1)k − 2n−1 + 1.

Moreover, for k ≥ 2n− 2,

rck(Qn) = (2n − 1)k − 2n−1 + 1.

However, these bounds are quite far from being optimal, specially when k is
close to the diameter of Qn.

The aim of this paper is to determine the radio antipodal number and the
radio number of the hypercube Qn by showing:

Theorem 2. For any positive integer n ≥ 1,

an(Qn) = (2n−1 − 1)dn
2
e+ ε(n),

with ε(n) = 1 if n ≡ 0 mod 4, ε(n) = 0 otherwise.
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Theorem 3. For any positive integer n ≥ 1,

rn(Qn) = (2n−1 − 1)dn + 3
2

e+ 1.

Example of minimal antipodal and radio labelings of Q4 and Q5 are given in
Figure 1, showing that an(Q4) = 15, an(Q5) = 45, rn(Q4) = 29 and rn(Q5) =
61.
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Figure 1: Optimal antipodal labelings (part (a) on the top) and radio labelings
(part (b) on the bottom) for Q4 and Q5.

The proofs of these theorems mainly rely on finding an ordering of the ver-
tices of Qn−1 with some prescribed distance (approximately half the diameter)
between successive vertices. This ordering is presented in Section 2 as a gen-
eralized binary Gray code since we find more convenient to use the Gray code
terminology. With this ordering in hand, we shall construct in Section 3 an
antipodal labeling and a radio labeling of the hypercube and we will show that
they are both optimal.

2 Generalized binary Gray codes

Define 0 = 1 and 1 = 0.
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Notation 1. For any two binary strings a = a0a1 · · · an−1 and b = b0b1 · · · bn′−1,
let

• |a| = n,

• a = a0 a1 · · · an−1,

• I(a) = a0 a1 · · · an−1,

• a ] b = a0a1 · · · an−1b0b1 · · · bn′−1.

The Hamming distance dH(a, b) between two n-bit strings a and b is the
number of bits in which they differ.

A binary Gray code is an ordered list of all the binary strings of length n
such that successive items have Hamming distance exactly one.

A Gray code therefore can be viewed as a Hamiltonian path (or cycle if the
code is circular, i.e. if the distance between the first and the last item of the
code is one) in the hypercube Qn.

There are many binary Gray codes. in the rest of this paper, we shall use
the binary reflected Gray code Bn [5] which can be constructed recursively :
B1 = (0, 1) and to obtain Bn, list Bn−1 and next to it list Bn−1 in reverse; then
prepend 0s to the first half and 1s to the second half. Table 1 illustrates the
structure of this code.

00. . . 0000
00. . . 0001
00. . . 0011
00. . . 0010
00. . . 0110

...
01. . . 0001
01. . . 0000
11. . . 0000
11. . . 0001

...
10. . . 0110
10. . . 0010
10. . . 0011
10. . . 0001
10. . . 0000

Table 1: Structure of the Gray code Bn

The elements of a list L of q items, will be numbered from 0 to q− 1 and we
shall denote by L(i) the element number i, 0 ≤ i ≤ q − 1.

Now, we shall introduce two variation of Gray codes that we will use in the
next section.

Definition 1. A binary (n, `)-Gray code (quasi (n, `)- Gray code respectively)
is a listing of all the n-bit strings such that the Hamming distance between two
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successive strings is exactly ` ( `, except between the two items 2n−1 − 1 and
2n−1 for which it is `− 1 or ` + 1, respectively).

Remark that a binary (n, 1)-Gray code is a binary Gray code. An example
of a (5, 3)-Gray code is given in Figure 2.

Remark 1. Notice that for even `, a (n, `)-Gray code cannot exist for parity
reason: if the list starts with a string containing an even number of 1s, as an
even number (`) of bits are changed between successive items, all the strings of
the code will have an even number of 1s. Thus we miss half of all the 2n strings.
This is the reason why we define quasi (n, `)-Gray codes.

Lemma 1. Let n and ` be two positive integers. If n > ` then there exists a
quasi (n, `)-Gray code.

Proof. Let n,m and ` be three positive integers with n > ` and m = n− ` + 1.
Define the lists Li constructed by using two binary reflected Gray codes in

this way: for all 0 ≤ i ≤ 2`−2 − 1 and 0 ≤ j ≤ 2m − 1,

Li(j) =
{ Bm(j) ] B`−1(i) if j is even,

Bm(j) ] B`−1(i) if j is odd .

Thus, the Hamming distance between two successive items in each list Li is
` and |Li(j)| = n.

We define the lists L′i by L′i(j) = I(Li(j)), for 0 ≤ j ≤ 2m − 1 and 0 ≤ i ≤
2`−2 − 1.

From the lists Li and L′i, we construct two lists G1
n,` and G2

n,` (which are
partial (n, `)-Gray codes) in this way: for 0 ≤ i ≤ 2`−2 − 1 and 0 ≤ j ≤ 2m − 1,

G1
n,`(i2

m + j) =
{ Li(j) if i is even,

L′i((j + 2) mod 2m) if i is odd;

G2
n,`(i2

m + j) =
{
L′i(j) if i is even,
Li((j + 2) mod 2m) if i is odd.

One can see that the last item in G1
n,` is G1

n,`(2
n−1 − 1) = L′2`−2−1(1) and

the last of G2
n,` is G2

n,`(2
n−1 − 1) = L2`−2−1(1).

Now, we show that the Hamming distance between any two successive items
in G1

n,` or in G2
n,` is `.

If the two successive items are in the same list Li (or L′i), then they have
Hamming distance ` by definition of Li (or L′i).

Otherwise, we consider two cases

- Between the item G1
n,`(2i2m + 2m − 1) = L2i(2m − 1) and G1

n,`((2i + 1)2m) =
L′2i+1(2), we have

L2i(2m − 1) = Bm(2m − 1) ] B`−1(2i) = 10...000 ] B`−1(2i),
L′2i+1(2) = I(Bm(2)) ] B`−1(2i + 1) = 10...011 ] B`−1(2i + 1).

By definition of the binary reflected Gray code, we have dH(Bm(2m −
1), I(Bm(2))) = 2 and dH(B`−1(2i),B`−1(2i+1)) = 1. Hence dH(B`−1(2i),B`−1(2i+
1)) = `− 2 and we obtain

dH(L2i(2m − 1),L′2i+1(2)) = `.
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- Between the item G1
n,`((2i+1)2m +2m−1) = L′2i+1(1) and the item G1

n,`((2i+
2)2m) = L2i+2(0). By definition we have

L′2i+1(1) = I(Bm(1)) ] B`−1(2i + 1) = 10...01 ] B`−1(2i + 1),
L2i+2(0) = Bm(0) ] B`−1(2i + 2) = 00...00 ] B`−1(2i + 2).

As for the previous case, we have dH(B`−1(2i + 1),B`−1(2i + 2)) = ` − 2
and dH(I(Bm(1),Bm(0)) = 2. Thus

dH(L′2i+1(1),L2i+2(0)) = `.

To prove that G1
n,` is a circular code, we check that the Hamming distance

between the first item G1
n,`(0) = L0(0) and the last item G1

n,`(2
n−1 − 1) =

L′2`−2−1(1) is `. We have

L0(0) = Bm(0) ] B`−1(0) = 00...00 ] 00...0.

L′2`−2−1(1) = I(Bm(1)) ] B`−1(2`−2 − 1) = 10...01 ] 101...1.

Hence, as dH(Bm(0), I(Bm(1))) = 2 and dH(B`−1(0),B`−1(2`−2 − 1)) = ` − 2
(since B`−1(2`−2 − 1) = 010 . . . 0), we obtain dH(L0(0),L′2`−2−1(1)) = `.

For the list G2
n,`, the same method can be used to prove that the Hamming

distance is ` for any two successive items.
Finally, we construct the quasi (n, `)-Gray code by setting:

Gn,`(j) =
{ G1

n,`(j) if 0 ≤ j ≤ 2n−1 − 1,

G2
n,`((j + 2) mod 2n−1) if 2n−1 ≤ j ≤ 2n − 1.

Now, we prove that the Hamming distance between the item Gn,`(2n−1−1) =
G1

n,`(2
n−1− 1) = L′2`−2−1(1) and the item Gn,`(2n−1) = G2

n,`(2) = L′0(2) is `− 1:
As we have L′2`−2−1(1) = I(Bm(1))]B`−1(2`−2 − 1) and L′0(2) = I(Bm(2))]

B`−1(0), then

dH(Gn,`(2n−1 − 1),Gn,`(2n−1)) = dH(I(Bm(1)), I(Bm(2))) + dH(B`−1(2`−2 − 1),B`−1(0))
= 1 + `− 2 = `− 1.

Lemma 2. For any n ≡ 1 mod 4, there exists a (n, n+1
2 )-Gray code.

Proof. Let n = 4q + 1 for some q ≥ 1, ` = n+1
2 = 2q + 1 and let G1

n,` and G2
n,`

as defined in the proof of Lemma 1 (for ` = 2q + 1). In that case, we construct
the (4q + 1, 2q + 1)-Gray code by setting:

Gn,`(j) =
{ G1

n,`(j) if 0 ≤ j ≤ 24q − 1,

G2
n,`((j + r) mod 24q) if 24q ≤ j ≤ 24q+1 − 1,

with r = 1
3 (22q+1 + 1).
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’

Figure 2: The (5, 3)-Gray code G5,3.

Now, we prove that the Hamming distance between the item Gn,`(24q−1) =
G1

n,`(2
4q − 1) = L′22q−1−1(2

2q+1 − 1) and the item Gn,`(24q) = G2
n,`(r) = L′0(r) is

2q + 1: One can see that

L′22q−1−1(2
2q+1 − 1) = I(B2q+1(22q+1 − 1)) ] B2q(22q−1 − 1) = 10 . . . 01︸ ︷︷ ︸

2q+1

101 . . . 1︸ ︷︷ ︸
2q

,

and
L′0(r) = I(B2q+1(r)) ] B2q(0) = 1 . . . 10︸ ︷︷ ︸

2q+1

1 . . . 1︸ ︷︷ ︸
2q

.

The fact that I(B2q+1(r)) = 1 . . . 10︸ ︷︷ ︸
2q+1

, or equivalently, that B2q(r) = 1 . . . 10︸ ︷︷ ︸
2q

can be proved by induction on q: For q = 1, we have B2(3) = 10. Suppose
that B2q( 1

3 (22q+1 + 1)) = 1 . . . 10 for some q > 1. By construction of the binary
reflected Gray code, we have Bn+1(2n+1−j) = 1]Bn(j) for all j, 0 ≤ j ≤ 2n−1.
Then,
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B2q+1(22q+1 − 1
3
(22q+1 + 1)) = 1 ] B2q(

1
3
(22q+1 + 1)) = 1 . . . 10.

Hence,

B2q+2(22q+2−22q+1+
1
3
(22q+1+1)) = 1]B2q+1(22q+1− 1

3
(22q+1+1)) = 1 . . . 10.

Since 22q+2−22q+1 + 1
3 (22q+1 +1) = 22q+1 + 1

3 (22q+1 +1) = 1
3 (22(q+1)+1 +1),

we have shown that B2q+2(1
3 (22(q+1)+1 + 1)) = 1 . . . 10.

Consequently,

dH(L′22q−1−1(2
2q+1 − 1),L′0(r)) = 2q + 1.

The construction of a (5, 3)-Gray code is illustrated in Figure 2.
To end this section, we want to mention that it seems possible to construct

a (n, `)-Gray code for any n > 1 and any odd ` < n, but we did not try to go
further in this direction since quasi (n, `)-Gray codes are sufficient for us when
n 6≡ 1 mod 4.

3 The radio antipodal and radio numbers of the
hypercube

We begin by showing a lower bound for the radio k-chromatic number of the
hypercube. The argument is similar with the one used by Liu and Justie [12]
for obtaining a lower bound on the radio antipodal number of the cycle.

Lemma 3. For any three vertices x, y and z of the hypercube Qn,

d(x, y) + d(y, z) + d(x, z) ≤ 2n.

Moreover, if y = x then

d(x, y) + d(y, z) + d(x, z) = 2n.

Proof. The first inequality easily follows from the fact that for a given index
i, 0 ≤ i ≤ n − 1, any three binary n-bit strings have at most 2 bits in common
on that index i.

If y = x, then one can see that d(x, y) = n and d(y, z) + d(x, z) = n.

Proposition 1. For any positive integer n,

rck(Qn) ≥ (2n−1 − 1)d3k − 2n + 3
2

e+ k − n + 1.

Proof. Let f be a radio k-labeling of Qn and x0, x1, . . . , x2n−1 be an ordering
of the vertices such that f(xi+1) ≥ f(xi), 0 ≤ i ≤ 2n − 2.

By definition, we have

f(xi+2)− f(xi+1) ≥ k + 1− d(xi+2, xi+1),
f(xi+1)− f(xi) ≥ k + 1− d(xi+1, xi),
f(xi+2)− f(xi) ≥ k + 1− d(xi+2, xi).

(1)
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Summing up these three inequalities and using Lemma 3, we obtain :

2f(xi+2)−2f(xi) ≥ 3k+3−d(xi+2, xi+1)−d(xi+1, xi)−d(xi+2, xi) ≥ 3k+3−2n,

and thus
f(xi+2)− f(xi) ≥ d3k + 3− 2n

2
e. (2)

By applying for all values of i, 0 ≤ i ≤ 2n − 3, we obtain

2n−3∑
i=0

(f(xi+2)− f(xi)) ≥
2n−3∑
i=0

(d 3k+3−2n
2 e) ⇔

f(x2n−1) + f(x2n−2)− f(x1)− f(x0) ≥
2n−3∑
i=0

d 3k+3−2n
2 e.

Thus, assuming f(x0) = 0 and since f(x2n−2) ≤ f(x2n−1)−k−1+d(x2n−2, x2n−1)
and f(x1) ≥ f(x0) + k + 1− d(x1, x0), we get

2f(x2n−1) ≥ (2n − 2)d3k + 3− 2n

2
e+ 2k + 2− d(x1, x0)− d(x2n−2, x2n−1).

Consequently, as d(x1, x0) ≤ n and d(x2n−2, x2n−1) ≤ n, we obtain 2f(x2n−1) ≥
(2n − 2)d 3k+3−2n

2 e+ 2k − 2n + 2.
Therefore,

rck(Qn) ≥ (2n−1 − 1)d3k − 2n + 3
2

e+ k − n + 1.

3.1 The radio antipodal number

In this section, we prove Theorem 2 by showing a lower bound and a upper
bound that are equal.

Theorem 4. For any positive integer n,

an(Qn) ≥ (2n−1 − 1)dn
2
e+ ε(n),

with ε(n) = 1 if n ≡ 0 mod 4, ε(n) = 0 otherwise.

Proof. Using Proposition 1 with k = diam(Qn)− 1 = n− 1, we obtain

an(Qn) ≥ (2n−1 − 1)dn
2
e.

Now, for n ≡ 0 mod 4, we show that an(Qn) ≥ (2n−1 − 1)dn
2 e + 1. Let

f be a radio antipodal labeling of Qn and x0, x1, . . . , x2n−1 be an ordering of
the vertices such that f(xi+1) ≥ f(xi), 0 ≤ i ≤ 2n − 2. By contradiction,
assume that an(Qn) = (2n−1 − 1)dn

2 e. Then the inequalities (1) and (2) in
proof of Proposition 1 must become equalities and we must have d(x1, x0) =
d(x2n−2, x2n−1) = n.

By Lemma 3, as x1 = x0, then d(x2, x1) = d(x2, x0) = n
2 since f(x2) −

f(x0) = n
2 = n− d(x2, x0). By combining the equalities (1) for i = 1, we obtain
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d(x3, x2) = n and thus, by Lemma 3, d(x4, x3) = d(x4, x2) = n
2 . Applying this

for all i, 2 ≤ i ≤ 2n−3, we can see that d(x2i, x2i−1) = n
2 and d(x2i+1, x2i) = n

2 ,
0 ≤ i ≤ 2n−1 − 1. Such an ordering of the vertices of Qn is equivalent to a
(n − 1, n

2 )-Gray code, which does not exist since n
2 is even (as we have seen in

Remark 1), thus a contradiction.

Theorem 5. For any positive integer n ≥ 1,

an(Qn) ≤ (2n−1 − 1)dn
2
e+ ε(n),

with ε(n) = 1 if n ≡ 0 mod 4, ε(n) = 0 otherwise.

Proof. Let Q1
n−1 and Q2

n−1 be respectively the two sub-hypercubes of Qn in-
duced by the strings with a 0 on the left (1 on the left, respectively).

Let x0, x1, x2, . . . , x2n−1−1 be the ordering of the vertices of Q1
n−1 induced

by a (quasi if n 6≡ 2 mod 4) (n− 1, bn
2 c)-Gray code Gn−1,bn

2 c (such a code exists
by Lemma 1 and Lemma 2): xi = 0 ] Gn−1,bn

2 c(i), 0 ≤ i ≤ 2n − 1.
Let yi = xi = 1 ] Gn−1,bn

2 c(i), 0 ≤ i ≤ 2n − 1. Hence y0, y1, y2, . . . , y2n−1−1

is an ordering of the vertices Q2
n−1 induced by a (n− 1, bn

2 c)-Gray code.
We consider two cases depending on whether n is even or odd.

Case 1. n = 2p + 1 is odd, for some p ≥ 1.
We define a labeling function f on Q2p+1 as follows





f(x0) = 0,
f(xi+1) = f(xi) + p + 1 0 ≤ i ≤ 22p − 2
f(yi) = f(xi), 0 ≤ i ≤ 22p − 1.

Then the two vertices x22p−1 and y22p−1 have the maximum label :

f(x22p−1) = f(y22p−1) =
22p−1∑

i=1

(p + 1) = (22p − 1)(p + 1).

Now, we show that the distance condition is verified for any two vertices a
and b of Q2p+1. We distinguish two cases:

Subcase 1.1 The two vertices are both in Q1
2p (or in Q2

2p, because we
have d(xi, xj) = d(yi, yj), f(xi) = f(yi) and f(xj) = f(yj)): assume a = xi and
b = xj , with i > j. Then

|f(xi)− f(xj)| ≥ diam(Q2p+1)− d(xi, xj) ⇔
|f(xj) + (i− j)(p + 1)− f(xj)| ≥ 2p + 1− d(xi, xj) ⇔

(i− j)(p + 1) ≥ 2p + 1− d(xi, xj).

If i > j + 1, then the inequality is clearly satisfied and if i = j + 1, it is also
satisfied since d(xj , xj+1) ≥ p.
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Subcase 1.2 The vertex a = xi is in Q1
2p and the vertex b = yj is in Q2

2p.
As yj = xj , then we have d(xi, yj) = 2p + 1− d(xi, xj). Thus,

|f(xi)− f(yj)| ≥ diam(Q2p+1)− d(xi, yj) ⇔
|f(xi)− f(xj)| ≥ 2p + 1− (2p + 1− d(xi, xj)) ⇔
|f(xi)− f(xj)| ≥ d(xi, xj) ⇔
(i− j)(p + 1) ≥ d(xi, xj).

If i = j + 1, then d(xi, xj) ≤ p + 1. Hence the inequality is satisfied. If
i > j + 1, then d(xi, xj) ≤ 2p. Thus, we obtain (i− j)(p + 1) ≥ 2p which is true
for any p ≥ 1 and any i > j + 1.

Consequently, f is an antipodal labeling of Q2p+1 and

an(Q2p+1) ≤ (22p − 1)(p + 1).

Case 2. n = 2p is even, for some p ≥ 1.
We define a labeling function f on Q2p as follows





f(x0) = 0,
f(xi+1) = f(xi) + p, with 0 ≤ i ≤ 22p−1 − 2, i 6= 22p−2 − 1 if p ≡ 0 mod 2,
f(x22p−2) = f(x22p−2−1) + p + 1, if p ≡ 0 mod 2,
f(yi) = f(xi), 0 ≤ i ≤ 22p−1 − 1.

Then the two vertices x22p−1−1 and y22p−1−1 have the maximum label : If

p ≡ 0 mod 2, then f(x22p−1−1) = f(y22p−1−1) = 1 +
22p−1∑
i=1

(p) = (22p − 1)p + 1

and if p ≡ 1 mod 2, then f(x22p−1−1) = f(y22p−1−1) =
22p−1∑
i=1

(p) = (22p − 1)p.

The fact that f is an antipodal labeling can be shown as for the previous
case. Consequently,

an(Q2p) ≤ (22p−1 − 1)p + ε(2p),

with ε(n) = 1 if n ≡ 0 mod 4, ε(n) = 0 otherwise.

3.2 The radio number

In this section, we prove Theorem 3 presented in the introduction, which we
recall below:

Theorem 6. For any positive integer n ≥ 1,

rn(Qn) = (2n−1 − 1)dn + 3
2

e+ 1.

Proof. The fact that rn(Qn) ≥ (2n−1 − 1)dn+3
2 e + 1 is a direct consequence of

Proposition 1 for k = diam(Qn) = n.
Now, to show that rn(Qn) ≤ (2n−1 − 1)dn+3

2 e + 1, we use the same order-
ing x0, x1, x2, . . . , x2n−1−1 and y0, y1, y2, . . . , y2n−1−1 of Qn used in the proof of
Theorem 5.
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We define a labeling function f on Qn as follows :




f(x0) = 0,
f(xi+1) = f(xi) + dn+3

2 e, 0 ≤ i ≤ 2n−1 − 2,
f(yi) = f(xi) + 1, 0 ≤ i ≤ 2n−1 − 1.

Then the vertex y2n−1−1 has the maximum label :

f(y2n−1−1) = f(x2n−1−1) + 1 = (2n−1 − 1)dn + 3
2

e+ 1.

As for the radio antipodal number, to show that the distance condition is
verified for any two vertices a and b of Qn, we distinguish two cases:

Case 1. The two vertices are both in Q1
n−1 (or in Q2

n−1): assume a = xi

and b = xj , with i > j. Then

|f(xi)− f(xj)| ≥ diam(Qn) + 1− d(xi, xj) ⇔
|f(xj) + (i− j)dn+3

2 e − f(xj)| ≥ n + 1− d(xi, xj) ⇔
(i− j)dn+3

2 e ≥ n + 1− d(xi, xj).

If i > j + 1, then the inequality is clearly satisfied and if i = j + 1, it is also
satisfied since d(xj , xj+1) ≥ bn

2 c.

Case 2. The vertex a = xi is in Q1
n and the vertex b = yj is in Q2

n. As,
yj = xj then we have d(xi, yj) = n− d(xi, xj) Thus,

|f(xi)− f(yj)| ≥ diam(Qn) + 1− d(xi, yj) ⇔
|f(xi)− f(xj)| ≥ n + 1− (n− d(xi, xj)) ⇔
|f(xi)− f(xj)| ≥ 1 + d(xi, xj) ⇔

(i− j)dn+3
2 e ≥ 1 + d(xi, xj).

If i = j + 1, then d(xi, xj) ≤ bn
2 c + 1. Hence the inequality is satisfied. If

i > j + 1, then d(xi, xj) ≤ n − 1. Thus, we obtain (i − j)dn+3
2 e ≥ n which is

true for any i > j + 1.
Consequently, f is a radio labeling of Qn and rn(Qn) ≤ (2n−1−1)dn+3

2 e+1.
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