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Abstract

In this paper, the total chromatic number and fractional total chromatic number of cir-
culant graphs are studied. For cubic circulant graphs we give upper bounds on the fractional
total chromatic number and for 4-regular circulant graphs we find the total chromatic number
for some cases and we give the exact value of the fractional total chromatic number in most
cases.
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1 Introduction

Let G = (V,E) be a simple graph with vertex set V (G) and edge set E(G). We denote by ∆(G)
the maximum degree of the graph G.

The notion of total colouring is a mixing of the vertex colouring and edge colouring; it was
introduced and studied by Behzad [1] and Vizing [14]. We call a vertex or an edge an element of
the graph and two elements are neighbors if they are either adjacent or incident.

Definition 1 A proper total k-colouring of a graph G is a mapping f from the element set
V (G) ∪ E(G) to the colour set C = {0, 1, 2, ..., k − 1}, such that any two neighboring elements
receive distinct colours. The total chromatic number χ

′′
(G) of G is the smallest positive integer

k for which there exists a proper total k-colouring.

Clearly, for any graph G, χ
′′
(G) ≥ ∆(G) + 1, since a vertex of maximum degree needs a

different colour from those ∆(G) assigned to its incident edges. The problem of computing the
total chromatic number of a given graph is NP -complete even where restricted to regular bipartite
graphs [11, 12].

Behzad [1] and Vizing [14] independently made the following conjecture for the total colouring
of a graph.

Total Colouring Conjecture (TCC): For any graph G,

χ
′′
(G) ≤ ∆(G) + 2.

In general the total colouring conjecture implies that for every graph G, χ
′′
(G) attains one of

the two values ∆(G) + 1 or ∆(G) + 2. A graph G is type 1 if χ
′′
(G) = ∆(G) + 1 and it is type 2

if χ
′′
(G) = ∆(G) + 2.

The TCC is known to hold for some classes of graphs: bipartite graphs, some planar graphs
[3], graphs of maximum degree at least 5 [9]. Moreover, the exact value of the total chromatic
number is known for some simple classes of graphs: the path Pn, n ≥ 3 is type 1; the cycle Cn is
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type 1 if n ≡ 0 mod 3 and is type 2 otherwise [15]; the complete bipartite graph Kn,m is type 1 if
n = m and is type 2 if n 6= m [2]; the complete graph Kn is type 1 if n is odd and is type 2 if n is
even [2].

For a sequence of positive integers 1 ≤ d1 < d2 < . . . < d` ≤ bn
2 c the circulant graph

G = Cn(d1, d2, . . . , d`) has vertex set V = Zn = {0, 1, 2, . . . , n − 1}, two vertices x, y being
adjacent iff x ≡ (y ± di) mod n for some i, 1 ≤ i ≤ `.

We will use the following notation for the circulant graph G = Cn(d1, d2, . . . , d`) : V (G) =

{v0, v1, v2, . . . , vn−1} and E(G) =
⋃̀
i=1

Ei(G) where Ei(G) = {ei
0, ei

1, . . . , e
i
n−1} and ei

j = (vj , v(j+di) mod n)

for 1 ≤ i ≤ ` and 0 ≤ j ≤ n − 1 (if n is even and d` = n
2 , then E`(G) = {e`

0, e
`
1, . . . , e

`
n−1

2
}). An

edge of Ei(G) will be called an edge of length di.
Concerning total colouring of circulant graphs, little is known : cubic circulant graphs were

studied by Hackmann and Kemnitz [6] who determine their type and a upper bound on the circular
chromatic number of cubic circulant graphs of type 2. Campos and Mello [4, 5] studied the power
of cycle Cp

n. For p = 2 they showed that if n = 7 then C2
n is type 2, and type 1 otherwise. In

general they showed that χ
′′
(Cp

n) ≤ ∆(Cp
n)+ 2 and conjectured that Cp

n is type 2 if p > n
3 − 1 and

n is odd; and type 1 otherwise.
An independent total set in a graph is a subset of mutually non neighboring elements of G.

The total independence number of G denoted by α
′′
(G) is the size of a largest total independent

set in G.

Definition 2 A b-fold total colouring of a graph G is an assignment of sets of size b to the
elements of a graph such that neighboring elements receive disjoint sets. An a/b-total colouring is
a b-fold total colouring out of a available colours.

The fractional total chromatic number χ
′′

f (G) is given by

χ
′′

f (G) = min{a

b
, G has an a/b-total colouring}.

The fractional chromatic number and the fractional chromatic index of G are denoted by χf (G)
and χ

′

f (G), respectively.

Property 1 For every graph G of order n,

χ
′′

f (G) ≥ |V (G)|+ |E(G)|
α′′(G)

.

The fractional version of the TCC was proved by Kilakos and Reed [8]: for any graph G,
χ
′′

f (G) ≤ ∆(G) + 2. However, the complexity of finding the fractional total chromatic number it
still unknown, and there is not a lot of research concerning fractional total colourings.

The circular total chromatic number, denoted by χ
′′

c (G), is the circular extension of total
colouring which was considered in [7, 6].

Property 2 For every graph G of order n,

∆(G) + 1 ≤ χ
′′

f (G) ≤ χ
′′

c (G) ≤ χ
′′
(G).

In this paper, we first study in Section 2 the fractional total chromatic number for circulant
graph Cn(d1, d2, . . . , d`) by introducing the notion of fractional stable in circulant graphs, and we
give a general upper bound on the fractional total chromatic number. In Section 3, we investigate
and determine the fractional total chromatic number of cubic circulant graphs. Finally in Section
4, we give the exact value of the total chromatic number for some 4-regular circulant graphs and
we determine the fractional total chromatic number of 4-regular circulant graphs in most cases.
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2 Fractional stables in circulant graphs

In this section we define the notion of fractional stable of a circulant graph and we give a general
upper bound on the fractional total chromatic number of circulant graphs.

In the rest of the paper, by a stable of a graph G we mean an independent total set (a subset
of independent elements of V (G) ∪ E(G)).

Definition 3 For a stable S of Gn(d1, d2, . . . , d`), we denote by V (S) the vertices of S and by
Ei(S) the edges of length di of S. Let also n(S) = |V (S)| and mi(S) = |Ei(S)| for 1 ≤ i ≤ `.
Such a stable S will also be called a (n(S),m1(S),m2(S), . . . ,m`(S))-stable.

Definition 4 A (multi) set S = {S1, S2, . . . , Sk} of k stables of Cn(d1, d2, . . . , d`) form a fractional
(η, µ1, µ2, . . . , µ`)-stable FS with

η =
k∑

i=1

n(Si)
k ,

µj =
k∑

i=1

mj(Si)
k , 1 ≤ j ≤ `.

Definition 5 A (η, µ1, µ2, . . . , µ`)-stable (fractional or not) in Cn(d1, d2, . . . , d`) is complete if
and only if η + 2

∑`
i=1 µi = n.

v 1

v 2

v 3

v 4

v 5v 6

v 7

v 8

v 9

v 10

v 0
v 1

v 2

v 3

v 4

v 5v 6

v 7

v 8

v 9

v 10

v 0

(a) (b)

Figure 1: A (3, 1, 3)-stable (a) and a (1, 4, 1)-stable (b) in C11(1, 3).

Definition 6 A (η, µ1, µ2, . . . , µ`)-stable (fractional or not) in Cn(d1, d2, . . . , d`) is balanced if{
η = µi 1 ≤ i ≤ ` if d` ≤ bn−1

2 c,
η = µi = 2µ` 1 ≤ i ≤ `− 1 if d` = n

2 .

Figure 1 shows an example of a (3, 1, 3)-stable (part (a)) and a (1, 4, 1)-stable (part (b)) in
C11(1, 3), whose union forms a fractional (2, 5

2 , 2)-stable (i.e. complete but not balanced). On the
other hand we can form a balanced and complete fractional ( 11

5 , 11
5 , 11

5 )-stable from 3 copies of the
stable depicted on part (b) and 2 copies of the stable depicted on part (a).

Note that :

χf (Cn) = χ
′

f (Cn) =
{

2 if n = 2p,
2p+1

p if n = 2p + 1.
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Lemma 1 Let G = Cn(d1, d2, . . . , d`) be a circulant graph and let FS be a fractional (η, µ1, µ2, . . . , µ`)-
stable. Then the fractional total chromatic number of G satisfies:

• If d` ≤ bn−1
2 c and η ≥ max`

i=1(µi), then

χ
′′

f (G) ≤ n

η
+

∑̀
i=1

(
η − µi

η
)χ

′

f (Cpi), where pi =
n

gcd(n, di)
.

• If d` = n
2 and η ≥ max{µ1, µ2, . . . , µ`−1, 2µ`}, then

χ
′′

f (G) ≤ n

η
+

`−1∑
i=1

(
η − µi

η
)χ

′

f (Cpi)−
2µ`

η
+ 1, where pi =

n

gcd(n, di)
.

Proof : Assume that G = Cn(d1, d2, . . . , d`) admits a fractional (η, µ1, µ2, . . . , µ`)-stable FS

obtained from k stables S0
1 , S0

2 , . . . , S0
k, with |S0

i | > 0, η =
∑k

i=1
n(S0

i )
k and µj =

∑k
i=1

mj(S
0
i )

k for
1 ≤ j ≤ `.

Let Sθ
i be the stable obtained from S0

i by a ‘rotation’ of 2πθ
n i.e. if vr ∈ V (S0

i ) then vr+θ ∈ V (Sθ
i )

and if eq
r ∈ E(S0

i ) the eq
r+θ ∈ E(Sθ

i ) with 0 ≤ θ ≤ n− 1, 1 ≤ q ≤ `, 0 ≤ i ≤ k and addition taken
modulo n.

We first prove the first assertion. One can see that each vertex vr is exactly in s =
∑k

i=1 n(S0
i ) =

kη stables and each edge ej
r of length dj is exactly in aj =

∑k
i=1 mj(S0

i ) = kµj stables with
1 ≤ j ≤ ` and 0 ≤ r ≤ n − 1. For instance if {vt1 , vt2 , . . . , vt

n(S0
i
)
} ⊆ S0

i then vr ∈ V (Sθ
i ) for

θ = r − t1, r − t2, . . . , r − tn(S0
i ) (modulo n) and the same goes for the edges of each length.

Therefore, assigning a colour cj
i to all elements of each stable Sj

i result in a multi-colouring of
G with kn colours such that each vertex has s colours and each edge of length di has ai colours.

Now, since the edges of length di of G induce gcd(n, di) cycles of length n
gcd(n,di)

, and assuming

χ
′

f (C n
gcd(n,di)

) = v
w for some integers v and w, there exists a w(s− ai)-fold colouring of the edges

of length di with v(s− ai) colours and by the above, there also exists a multi-colouring of G with
knw colours such that each vertex gets sw colours and each edge of length di gets aiw colours.
Combining these two colourings, we obtain a sw-fold total colouring of G with knw+

∑k
i=1 v(s−ai)

colours.
Hence, as we have s = kη and aj =

∑k
i=1 mj(Si) = kµj for 1 ≤ j ≤ `, we obtain a fractional

colouring with knw
sw +

Pk
i=1 v(s−ai)

sw = kn
kη +

Pk
i=1(kη−kµi)v

kηw = n
η +

∑̀
i=1

(η−µi

η )χ
′

f (C n
gcd(n,di)

) colours.

To prove the second assertion of the lemma we proceed in a similar way except that we have
in this case a` = 2

∑k
i=1 m`(S0

i ). As all the edges of length d` = n
2 form an independent set (thus

can be coloured with the same (s− ai) colours), we obtain in this case

χ
′′

f (G) ≤ n

η
+

`−1∑
i=1

(
η − µi

η
)χ

′

f (C n
gcd(n,di)

)− 2µ`

η
+ 1.2

2

If we have µj = η for all j, 1 ≤ j ≤ `, then we obtain the following corollary:

Corollary 1 Let p be a positive rational number. If G = Cn(d1, d2, . . . , d`) possesses a fractional
(p, p, p, . . . , p)-stable with d` ≤ bn−1

2 c, then the fractional total chromatic number of G satisfies:

χ
′′

f (G) ≤ n

p
.

Lemma 2 For the circulant graph G = Cn(d1, d2, . . . , d`), the following assertions are equivalent:

i) χ
′′

f (G) = ∆(G) + 1,
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ii) G possesses a complete balanced fractional stable.

Proof : To prove this lemma it is easier to use the original definition of the fractional total
colouring rather than the (equivalent) definition given in the introduction: a fractional total
colouring of a graph G in ∆(G) + 1 colours is a function f from V (G) ∪ E(G) to [0, 1] such that∑

S∈I f(S) = ∆(G)+1 and ∀x ∈ V (G)∪E(G),
∑

S∈I,x∈S f(S) ≥ 1, where I is the set of all total
stables of G.

Suppose that I+ = {I1, I2, . . . , It} is the subset of I such that we have f(I) = 0 for all
I 6∈ I \ I+. By allowing multiple copies of a stable S in I+, we can assume that f(Ii) = ∆(G)+1

t
and thus we see that each element is at least in α stables, with α ≥ d t

∆(G)+1e.
This implies that

∑t
i=1 n(Ii) ≥ nα ≥ nd t

∆(G)+1e and ∀j,
∑t

i=1 mj(Ii) ≥ nd t
∆(G)+1e.

On the other part we have by definition ∀i, n(Ii) + 2
∑`

j=1 mj(Ii) ≤ n, thus

t∑
i=1

(n(Ii) + 2
∑̀
j=1

mj(Ii)) ≤ tn.

Together we obtain (∆(G) + 1)nd t
∆(G)+1e ≤

∑t
i=1(n(Ii) + 2

∑`
j=1 mj(Ii)) ≤ tn, and

t∑
i=1

(n(Ii) + 2
∑̀
j=1

mj(Ii)) =
t∑

i=1

n(Ii) + 2
t∑

i=1

∑̀
j=1

mj(Ii).

Therefore, we must have n(Ii) + 2
∑`

j=1 mj(Ii) = n for all i (each stable Ii is complete) and∑t
i=1 n(Ii) =

∑t
i=1 mj(Ii) (the fractional stable formed by the set of stables I+ is balanced).

To show that the converse is true, assume that G possesses a complete balanced fractional
stable FS . Then FS is a fractional (p, p, . . . , p)-stable with p = n

2`+1 and Corollary 1 gives that
χ
′′

f (G) = 2` + 1 = ∆(G) + 1. 2 2

3 Cubic circulant graphs

In this section we study the fractional chromatic number of cubic circulant graphs.
The only cubic circulant graphs are of the form G = C2p(d, p). Hackmann and Kemnitz [6]

showed the following results:

Lemma 3 ([6]) If ` is the greatest common divisor of d and p and d = `m, p = `n then C2p(d, p)
is isomorphic to ` copies of G2n(1, n) if m is odd or of C2n(2, n) if m is even.

Theorem 1 ([6]) The circulant graph G = C2p(d, p) is type 1 if and only if m is even and G is
not isomorphic to `C10(2, 5), otherwise G is type 2.

Consequently every cubic circulant C2p(1, p) along with C10(2, 5) are type 2.

Theorem 2 ([6]) For every type 2 cubic circulant graph G, we have χ
′′

c (G) ≤ 9
2 .

Lemma 4 The fractional total chromatic number of a cubic circulant graph G = C2p(1, p) having
a fractional (η, µ1, µ2)-stable with η ≥ max(µ1, 2µ2), satisfies

χ
′′

f (C2p(1, p)) ≤ 2(p− µ1 − µ2)
η

+ 3.

Proof : By using the result obtained in Lemma 1 we have

χ
′′

f (G) ≤ 2p
η + (η−µ1

η )χ
′

f (C 2p
gcd(2p,1)

)− 2µ2
η + 1 ⇒

χ
′′

f (G) ≤ 2p
η + (η−µ1

η )χ
′

f (C2p)− 2µ2
η + 1.
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As χ
′

f (C2p) = 2, we obtain

χ
′′

f (G) ≤ 2p + 2(η − µ1)− 2µ2

η
+ 1 =

2(p− µ1 − µ2)
η

+ 3.2

2

If the graph G possesses a fractional (a, a, 0)-stable, we can obtain the next corollary by
applying Lemma 4.

Corollary 2 For every cubic circulant graph G = C2p(1, p) possessing a fractional (a, a, 0)-stable,
the fractional total chromatic number satisfies

χ
′′

f (G) ≤ 2p

a
+ 1.

Therefore, in order to bound the fractional total chromatic number of cubic circulant graphs,
we now have to find fractional balanced stables or fractional (a, a, 0)-stables which are the most
complete possible.

Lemma 5 For any q ≥ 1, the circulant graph G = C8q(1, 4q) has a fractional (2q, 2q, q)-stable.
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v 3

v 5

e5
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v 7

v 8

v 9e9
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v 16

e16

e12

e20

v 22

v 23

e11’

e3’

e7’
v 18

v 19

v 17

v 20

v 21

Figure 2: A (6, 6, 3)-stable in C24(1, 12).

Proof : In fact in this case, the fractional stable is reduced to a single (2q, 2q, q)-stable S defined
as follows : for 0 ≤ j ≤ q − 1, 

v4j , v4q+4j+2 ∈ V (S)
e1
4j+1, e

1
4q+4j ∈ E1(S)

e2
4j+3 ∈ E2(S).

Such a stable is presented in Figure 2 for q = 3.
It is routine to show that S is an independent set.
Therefore, S is a (η, µ1, µ2)-stable with η = |V (S)| = 2q, µ1 = |E1(S)| = 2q and µ2 =

|E2(S)| = q which is also a fractional (2q, 2q, q)-stable. 2 2
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Lemma 6 For any q ≥ 1 and 1 ≤ r ≤ 3, the cubic circulant graph G = C8q+2r(1, 4q + r) has a
fractional (a, a, 0)-stable, where the value of a is given in the following table:

q ≡ 0 mod 3 q ≡ 1 mod 3 q ≡ 2 mod 3
r = 1 a = 16q+3

6 a = 8q+1
3 a = 16q+1

6

r = 2 a = 8q+3
3 a = 16q+5

6 a = 16q+7
6

r = 3 a = 16q+9
6 a = 16q+11

6 a = 8q+5
3

Proof : Case 1: n = 8q +2. A fractional (a, a, 0)-stable of G = C8q+2(1, 4q +1) can be obtained
from the two stables S1 and S2 defined below, except in the case q ≡ 1 mod 3 where the fractional
stable is reduced to a single (a, a, 0)-stable S1:

• If q ≡ 0 mod 3, let S1 and S2 be the two stables defined by{
v3j ∈ V (S1) 0 ≤ j ≤ 8q

3 ,

e1
3j+1 ∈ E1(S1) 0 ≤ j ≤ 8q

3 − 1.

{
v3j+2 ∈ V (S2) 0 ≤ j ≤ 8q

3 − 1,

e1
3j ∈ E1(S2) 0 ≤ j ≤ 8q

3 .

Thus, we obtain n(S1) = m1(S2) = 8q+3
3 , m1(S1) = n(S2) = 8q

3 and m2(S1) = m2(S2) = 0.

Therefore, S1 and S2 form a fractional ( 16q+3
6 , 16q+3

6 , 0)-stable.

• If q ≡ 1 mod 3, then for 0 ≤ j ≤ 8q−2
3 ,{

v3j ∈ V (S1),
e1
3j+1 ∈ E1(S1).

Therefore, S1 is a ( 8q+1
3 , 8q+1

3 , 0)-stable.

• If q ≡ 2 mod 3 then
v8q ∈ V (S1),
v3j ∈ V (S1), e1

3j+1 ∈ E1(S1) 0 ≤ j ≤ 4q−2
3 ,

v4q+3j+3 ∈ V (S1), e1
4q+3j+1 ∈ E1(S1) 0 ≤ j ≤ 4q−5

3 .


e1
8q ∈ E1(S2)

v3j+2 ∈ V (S2) e1
3j ∈ E1(S2) 0 ≤ j ≤ 4q−2

3 ,

v4q+3j+4 ∈ V (S2) e1
4q+3j+2 ∈ E1(S2) 0 ≤ j ≤ 4q−5

3 .

Thus, we obtain n(S1) = m1(S2) = 8q+2
3 , m1(S1) = n(S2) = 8q−1

3 and m2(S1) = m2(S2) =
0.

Therefore, S1 and S2 form a fractional ( 16q+1
6 , 16q+1

6 , 0)-stable.

Case 2 : n = 8q + 4. The proof is similar with the one of Case 1 : a fractional (a, a, 0)-stable
of C8q+4(1, 4q +2) can be obtained from the two stables S1 and S2 except in the case q ≡ 0 mod 3
where the fractional stable is reduced to a single (a, a, 0)-stable S1:

S1 S2 a

q ≡ 0 mod 3


v3j ∈ V (S1) 0 ≤ j ≤ 8q

3 ,

e1
3j+1 ∈ E1(S1) 0 ≤ j ≤ 8q

3 .
8q+3

3

q ≡ 1 mod 3

8>>>><>>>>:
v8q+2 ∈ V (S1)

v3j ∈ V (S1) 0 ≤ j ≤ 4q−1
3 ,

e1
3j+1 ∈ E1(S1) 0 ≤ j ≤ 4q−1

3 ,

v4q+3j+4 ∈ V (S1) 0 ≤ j ≤ 4q−4
3 ,

e1
4q+3j+2 ∈ E1(S1) 0 ≤ j ≤ 4q−4

3 .

8>>>><>>>>:
e1
8q+2 ∈ E1(S2)

v3j+2 ∈ V (S2) 0 ≤ j ≤ 4q−1
3 ,

e1
3j ∈ E1(S2) 0 ≤ j ≤ 4q−1

3 ,

v4q+3j+3 ∈ V (S2) 0 ≤ j ≤ 4q−4
3 ,

e1
4q+3j+4 ∈ E1(S2) 0 ≤ j ≤ 4q−4

3 .

16q+5
6

q ≡ 2 mod 3


v3j ∈ V (S1) 0 ≤ j ≤ 8q+2

3 ,

e1
3j+1 ∈ E1(S1) 0 ≤ j ≤ 8q−1

3 .


v3j+2 ∈ V (S2) 0 ≤ j ≤ 8q−1

3 ,

e1
3j ∈ E1(S2) 0 ≤ j ≤ 8q+2

3 .
16q+7

6
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Case 3 : n = 8q + 6. Similarly, a fractional (a, a, 0)-stable of C8q+6(1, 4q + 3) can be obtained
from the two stables S1 and S2 except in the case q ≡ 2 mod 3 where the fractional stable is
reduced to a single (a, a, 0)-stable :

S1 S2 a

q ≡ 0 mod 3

8>>>><>>>>:
v8q+4 ∈ V (S1)

v3j ∈ V (S1) 0 ≤ j ≤ 4q
3 ,

e1
3j+1 ∈ E1(S1) 0 ≤ j ≤ 4q

3 ,

v4q+3j+5 ∈ V (S1) 0 ≤ j ≤ 4q−3
3 ,

e1
4q+3j+3 ∈ E1(S1) 0 ≤ j ≤ 4q−3

3 .

8>>>><>>>>:
e1
8q+4 ∈ V (S2)

v3j+2 ∈ V (S2) 0 ≤ j ≤ 4q
3 ,

e1
3j ∈ E1(S2) 0 ≤ j ≤ 4q

3 ,

v4q+3j+4 ∈ V (S2) 0 ≤ j ≤ 4q−3
3 .

e1
4q+3j+5 ∈ E1(S2) 0 ≤ j ≤ 4q−3

3 .

16q+9
6

q ≡ 1 mod 3


v3j ∈ V (S1) 0 ≤ j ≤ 8q+4

3 ,

e1
3j+1 ∈ E1(S1) 0 ≤ j ≤ 8q+1

3 .


v3j+2 ∈ V (S2) 0 ≤ j ≤ 8q+1

3 ,

e1
3j ∈ E1(S2) 0 ≤ j ≤ 8q+4

3 .
16q+11

6

q ≡ 2 mod 3


v3j ∈ V (S1) 0 ≤ j ≤ 8q+2

3 ,

e1
3j+1 ∈ E1(S1) 0 ≤ j ≤ 8q+2

3 .
8q+5

3

In each case, it is straightforward to verify that the defined sets are independent sets. 22 We
obtain the next corollary by combining Lemma 4, Corollary 2, Lemma 5 and Lemma 6.

Corollary 3 Let G = C2p(1, p) be a circulant graph with p = 4q + r for 0 ≤ r ≤ 3 and q ≥ 1. The
fractional total chromatic number of G satisfies

if r = 0 then
χ
′′

f (G) = 4,

if r = 1 then

χ
′′

f (G) ≤


4 + 3

16q+3 if q ≡ 0 mod 3,

4 + 3
8q+1 if q ≡ 1 mod 3,

4 + 9
16q+1 if q ≡ 2 mod 3,

if r = 2 then

χ
′′

f (G) ≤


4 + 3

8q+3 if q ≡ 0 mod 3,

4 + 9
16q+5 if q ≡ 1 mod 3,

4 + 3
16q+7 if q ≡ 2 mod 3,

if r = 3 then

χ
′′

f (G) ≤


4 + 9

16q+9 if q ≡ 0 mod 3,

4 + 3
16q+11 if q ≡ 1 mod 3,

4 + 3
8q+5 if q ≡ 2 mod 3.

In a more reduced way, we obtain the following bound which is asymptotically optimal :

Corollary 4 For any circulant graph G = C2p(1, p), then{
χ
′′

f (G) = 4 if p ≡ 0 mod 4,

χ
′′

f (G) ≤ 4 + 9
4p−3 otherwise.

To be complete with cubic circulant graphs, we have to treat the case of C10(2, 5) which is type
2: we have χ

′′

f (C10(2, 5)) ≤ χ
′′

c (C10(2, 5)) = 13
3 by the result of [6]. Indeed, by a case analysis, we

can easily be convinced that there does not exist a complete balanced fractional stable (and thus
χ
′′

f (C10(2, 5)) > 4. Moreover, it seems that 13
3 is the exact value of the fractional total chromatic

index of C10(2, 5), but we did not go further to prove it.

4 4-regular circulant graphs

In this section we study the total chromatic number and fractional total chromatic number for
4-regular circulant graphs. In the first we give the total chromatic number for some 4-regular
circulant graphs.
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i−2k
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iek

i−2k

ui+2k+1ϕ(          )=α+2
ui−2k−1ϕ(          )=α−2

ui−2k+1ϕ(          )=α
ui−2kϕ(       )=α−1

ui+2kϕ(       )=α+1

ui+2k−1ϕ(          )=α

ui+1ϕ(     )=α+1ui−1ϕ(     )=α−1
uiϕ(  )=α

ui+2k−1ϕ(          )=α−2

ui+2k+1ϕ(          )=α

ui+2kϕ(       )=α−1
ui−2kϕ(       )=α+1

ui−2k−1ϕ(          )=α

ui−2k+1ϕ(          )=α+2

ui−1ϕ(     )=α−1 ui+1ϕ(     )=α+1

(b)(a)

uiϕ(  )=α

Figure 3: Total colouring of C5p(1, k): (a) k ≡ 2 mod 5, (b) k ≡ 3 mod 5.

Theorem 3 Every 4-regular circulant graph G = C5p(1, k) is type 1 for any positive integers p
and k < 5p

2 with k ≡ 2 mod 5 or k ≡ 3 mod 5.

Proof : We rename the elements of V (G)∪E1(G) as follows : u0 = v0, u1 = e1
0, u2 = v1, . . . , u10p−2 =

v5p−1, u10p−1 = e1
5p−1.

We define a total colouring function ϕ by

ϕ(ui) = i mod 5, 0 ≤ i ≤ 10p− 1.

In order to colour the internal edges of G, we consider two cases (the indices on the ui are modulo
10p and the colours are modulo 5):

Case 1 : k ≡ 2 mod 5. Suppose that the element ui is a vertex and ϕ(ui) = α. Then, by
definition of ϕ, we have (modulo 5) ϕ(ui−1) = α− 1 and ϕ(ui+1) = α + 1.

The two neighboring vertices of ui linked by an edge of length k are ui−2k and ui+2k, and by
definition of ϕ, we have ϕ(ui−2k−1) = α, ϕ(ui−2k) = α+1, ϕ(ui−2k+1) = α+2, ϕ(ui+2k−1) = α−2,
ϕ(ui+2k) = α− 1 and ϕ(ui+2k+1) = α, as Figure 3 (a) illustrates.

To colour the two internal edges ek
i−2k = (ui−2k, ui) and ek

i = (ui, ui+2k) we must have
ϕ(ek

i−2k) 6∈ {ϕ(ui−1), ϕ(ui), ϕ(ui+1), ϕ(ui−2k−1), ϕ(ui−2k), ϕ(ui−2k+1)} = {α − 1, α, α + 1, α + 2}
and ϕ(ek

i ) 6∈ {ϕ(ui−1), ϕ(ui), ϕ(ui+1), ϕ(ui+2k−1), ϕ(ui+2k), ϕ(ui+2k+1) = {α− 2, α− 1, α, α + 1}.
Thus, we can set ϕ(ek

i−2k) = α + 3 and ϕ(ek
i ) = α + 2.

Therefore we have used five colours (notice that α−2 ≡ (α+3) mod 5), consequently χ
′′
(G5p(1, k)) =

5.
Case 2 : k ≡ 3 mod 5. As for the precedent case, suppose that the element ui is a vertex and

ϕ(ui) = α. Then, by definition, ϕ(ui−1) = α− 1 and ϕ(ui+1) = α + 1.
The two neighboring vertices linked by an edge of length k are ui−2k and ui+2k, and by

definition of ϕ, we have ϕ(ui−2k−1) = α− 2, ϕ(ui−2k) = α− 1, ϕ(ui−2k+1) = α, ϕ(ui+2k−1) = α,
ϕ(ui+2k) = α + 1 and ϕ(ui+2k+1) = α + 2, as Figure 3 (b) illustrates.

To colour the two internal edges ek
i−2k = (ui−2k, ui) and ek

i = (ui, ui+2k) we must have
ϕ(ek

i−2k) 6∈ {ϕ(ui−1), ϕ(ui), ϕ(ui+1), ϕ(ui−2k−1), ϕ(ui−2k), ϕ(ui−2k+1)} = {α− 2, α− 1, α, α + 1}
and ϕ(ek

i ) 6∈ {ϕ(ui−1), ϕ(ui), ϕ(ui+1), ϕ(ui+2k−1), ϕ(ui+2k), ϕ(ui+2k+1) = {α− 1, α, α + 1, α + 2}.
Thus, we can set ϕ(ek

i−2k) = α + 2 and ϕ(ek
i ) = α + 3.

Therefore we have used five colours, consequently χ
′′
(C5p(1, k)) = 5. 2 2

Theorem 4 Every 4-regular circulant graph G = C6p(1, k) is type 1 for any positive integer p ≥ 3
and k < 3p with k ≡ 1 mod 3 or k ≡ 2 mod 3.
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Proof :Let G = C6p(1, k) and let q = gcd(6p, k). As k 6≡ 0 mod 3, then 3 divides 6p
q .

Let Ci be the cycle in G induced by the edges of length k that contains the vertex vi, 0 ≤
i ≤ q − 1. Notice that if 6p and k are relatively prime, then there is only one cycle C0. Let
C0 = (u0, . . . , u 6p

q
− 1), with u2j = vjk mod 6p and u2j+1 = ek

jk mod 6p, 0 ≤ j ≤ 6p
q − 1.

Colour vertices and edges of C0 with colours 0, 1, 2 cyclically, i.e. set ϕ(ui) = i mod 3. The
other cycles Ci, 1 ≤ i ≤ q − 1, are coloured similarly by setting ϕ(C2i+1) = ϕ(C2i) + 1 mod 3 and
ϕ(C2i+2) = ϕ(C2i), 0 ≤ i ≤ q−3

2 , and ϕ(Cq−1) = ϕ(C0) + 2 if q is even. That is if vj ∈ C0 for
some j, then ϕ(vj+2i+1) = (ϕ(vj) + 1) mod 3, ϕ(vj+2i+2) = ϕ(vj), 0 ≤ i ≤ q−3

2 and ϕ(vj+q−1) =
(ϕ(vj) + 2) mod 3 if q is even.

For the edges of length one, set ϕ(e1
i ) = i mod 3 + 2, 0 ≤ i ≤ 6p− 1.

Clearly, by definition, ϕ colours properly the edges of G. Now, let us show that the colouring
of the vertices is also proper: two adjacent vertices of Ci and Ci+1 have not the same colour by
definition. Then, it just remains to see that the vertex vq−1 of Cq−1 has a different colour of that
of vertex vq of C0: We have ϕ(vq−1) = ϕ(v0) = 0 if q is odd or ϕ(vq−1) = ϕ(v0)+2 = 2 if q is even
and ϕ(vq) = 1. Thus ϕ is a proper total colouring of G with five colours; hence G is type 1. 2 2

Remark that not all circulant graphs G = Cn(1, 3) are type 1: for instance C8(1, 3) which is
isomorphic to K4,4 is type 2 since α

′′
(C8(1, 3)) ≤ 4 thus (by properties 1 and 2) χ

′′
(C8(1, 3)) ≥

24
4 = 6.

Nevertheless, it seems that most of the 4-regular circulant graphs are of type 1, but we are
not able to prove it. We then now try to determine the fractional chromatic number of 4-regular
circulant graphs.

Lemma 7 Let n, q and k be integers, k 6≡ 0 mod 3, 2 ≤ k ≤ bn−1
2 c and 2q ≤ n if q ≡ 0 mod k,

q +k(b q
k c+1) ≤ n otherwise. If n−2q ≡ 0 mod 3 then the circulant graph G = Cn(1, k) possesses

a complete (a, a, q)-stable.

Proof :We prove this lemma by constructing the (a, a, q)-stable. Starting from v0 and going in the
increasing direction of the vertex indices, we first select q independent edges of length k 6≡ 0 mod 3
successively in Cn(1, k). Suppose that q = αk + β, 0 ≤ β ≤ k − 1.

• If β = 0, the q independent edges of length k use 2q consecutive vertices. Therefore we must
have 2q ≤ n and it remains n− 2q vertices.

• If 1 ≤ β ≤ k − 1, q independent edges of length k use 2αk + β + k vertices. Therefore we
must have 2αk + k + β = q + k(b q

k c+ 1) ≤ n and it remains a block A of k − β consecutive
vertices and a block B of n − (2αk + k + β) consecutive vertices. Thus a total of n − 2q
vertices.

In the first case (β = 0), as k 6≡ 0 mod 3, an independent set with a vertices and a edges of
length 1 can be constructed by selecting alternatively a vertex and an edge along the consecutive
remaining vertices.

Similarly, in the second case (1 ≤ β ≤ k − 1), the independent set of a vertices and a edges
of length 1 can be constructed by alternating the vertices and the edges of length 1 along the
remaining vertices that are divided in two blocks A and B, using the following rule : if the first
selected element in block A is a vertex, then the first selected element in block B must be an edge
(since the first vertex of B is at distance k with the one of A) and conversely. An illustration is
given in Figure 4 for the cases |A| ≡ 1 mod 3, |B| ≡ 2 mod 3 and |A| ≡ 2 mod 3, |B| ≡ 1 mod 3.

If q < k there could be an edge of length k between a vertex at the beginning of block A
and a vertex at the end of block B. If |A| ≡ 1 mod 3 and |B| ≡ 2 mod 3 or |A| ≡ 2 mod 3 and
|B| ≡ 1 mod 3, this is not the case since by definition of the stable, the pattern is symmetrical in
each block, i.e. if the first selected element of the block is a vertex (an edge, respectively) then
the last one is a vertex (an edge, respectively) too. If |A| ≡ 0 mod 3 and |B| ≡ 0 mod 3, then the
stable is defined by {ek

0 , ek
1 , . . . , ek

q−1} ∪ {vq+3j , e
1
q+3j+1 : 0 ≤ j ≤ k−q

3 − 1} ∪ {vn−3i−1, e
1
n−3i−3, :

0 ≤ i ≤ n−k−q
3 − 1}. Thus the only possibility to have an edge between two vertices of this
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Figure 4: Structure of the (a, a, q)-stable when |A| ≡ 1 mod 3 and |B| ≡ 2 mod 3 (a); and when
|A| ≡ 2 mod 3 and |B| ≡ 1 mod 3 (b).

set is if k − 3i − 1 = q + 3j for some i, j i.e. if 3(i + j) = k − q − 1, which is impossible since
k − q = |A| ≡ 0 mod 3.

By hypothesis, n − 2q ≡ 0 mod 3 and thus a = n−2q
3 . Hence, the (a, a, q)-stable is complete.

2 2

Lemma 8 For every positive integers n ≥ 9 and k 6≡ 0 mod 3, 2 ≤ k ≤ bn−1
2 c, the circulant graph

Cn(1, k) possesses a fractional (n
5 , n

5 , n
5 )-stable.

Proof :Let G = Cn(1, k). By Lemma 7, we can define one or two complete stables S1 and S2 in
the graph G as described in the following table :

S1 S2

n = 5p, p ≥ 2 (p, p, p)-stable

n = 5p + 1, p ≥ 2 (p + 1, p + 1, p− 1)-stable (p− 1, p− 1, p + 2)-stable

n = 5p + 2, p ≥ 2 (p + 2, p + 2, p− 2)-stable (p, p, p + 1)-stable

n = 5p + 3, p ≥ 2 (p− 1, p− 1, p + 3)-stable (p + 1, p + 1, p)-stable

n = 5p + 4, p ≥ 1 (p, p, p + 2)-stable (p + 2, p + 2, p− 1)-stable

In each case one can see that n − 2m2(S1) ≡ 0 mod 3 and n − 2m2(S2) ≡ 0 mod 3, thus the
condition of Lemma 7 is satisfied.

Moreover, for each of the above (a, a, q)-stable, it can be shown that the condition q + k(b q
k c+

1) ≤ n is verified. We just prove it for the most “critical” case: the (p−1, p−1, p+3)-stable when
n = 5p + 2 (the other cases can be proved in a similar way).

If k < q = p + 3, then we have k(b q
k c+ 1) ≤ k(p+2

k + 1) = p + 2 + k ≤ 2p + 4 and thus we have
to show that p + 3 + 2p + 4 ≤ n = 5p + 2 which is verified whenever p ≥ 2.

If k > q = p + 3, then k(b q
k c+ 1) = k. Hence we need p + 3 + k ≤ 5p + 2, i.e. k ≤ 4p which is

verified since by hypothesis k ≤ bn−1
2 c.

Now, a fractional (n
5 , n

5 , n
5 )-stable is obtained from 3 stables S1 and 2 stables S2 when n = 5p+1,

or 5p + 4, and from one stable S1 and 4 stables S2 when n = 5p + 2 or 5p + 3 (in the case n = 5p,
the fractional stable is reduced to a single (p, p, p)-stable). 2 2

For the case k = 3, the next lemma gives a similar result, using an ad-hoc method.

Lemma 9 For any positive integer n ≥ 9, n 6= {12, 13, 17}, the 4-regular circulant graph G =
Cn(1, 3) has a fractional (n

5 , n
5 , n

5 )-stable.

Proof :To prove this lemma, we construct for each value of the residue of n modulo 5, the one or
two stables that form the fractional (n

5 , n
5 , n

5 )-stable :
Case 1 : n = 5p. We define the (p, p, p)-stable S as the table shows:

S : (p, p, p)-stable8<:
v5i ∈ V (S1) 0 ≤ i ≤ p− 1,
e1
2+5i ∈ E1(S1) 0 ≤ i ≤ p− 1.

e3
1+5i ∈ E3(S1) 0 ≤ i ≤ p− 1,
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Case 2 : n = 5p + 1 and p ≥ 2. We define two stables S1 and S2 as follows:

S1 : (p + 1, p− 1, p + 1)-stable S2 : (p− 1, p + 2, p− 1)-stable8>>>>>><>>>>>>:

v1, v6, v10 ∈ V (S1)
e1
8 ∈ E1(S1)

e3
0, e3

2, e3
4 ∈ E3(S1)

v15+5i ∈ V (S1) 0 ≤ i ≤ p− 3,
e1
12+5i ∈ E1(S1) 0 ≤ i ≤ p− 3,

e3
11+5i ∈ E3(S1) 0 ≤ i ≤ p− 3.

8>><>>:
e1
0, e1

2, e1
4 ∈ E1(S2)

v6+5i ∈ V (S2) 0 ≤ i ≤ p− 2,
e1
8+5i ∈ E1(S2) 0 ≤ i ≤ p− 2,

e3
7+5i ∈ E3(S2) 0 ≤ i ≤ p− 2.

Therefore, we obtain a fractional ( 5p+1
5 , 5p+1

5 , 5p+1
5 )-stable from three stables S1 and two stables

S2.
Case 3 : n = 5p + 2 and p > 3. We define two stables S1 and S2 as follows:

S1 : (p, p + 1, p)-stable S2 : (p + 2, p− 2, p + 2)-stable

8>><>>:
e1
0 ∈ E1(S1)

v6+5i ∈ V (S1) 0 ≤ i ≤ p− 1,
e1
3+5i ∈ E1(S1) 0 ≤ i ≤ p− 1,

e3
2+5i ∈ E3(S1) 0 ≤ i ≤ p− 1.

8>>>>>><>>>>>>:

v0, v2, v7, v11, v13, v18 ∈ V (S2)
e1
9, e1

20 ∈ E1(S2)
e3
1, e3

3, e3
5, e3

12, e3
14, e3

16 ∈ E3(S2)
v22+5i ∈ V (S2) 0 ≤ i ≤ p− 5,
e1
24+5i ∈ E1(S2) 0 ≤ i ≤ p− 5,

e3
23+5i ∈ E3(S2) 0 ≤ i ≤ p− 5.

Thus, we obtain a fractional ( 5p+2
5 , 5p+2

5 , 5p+2
5 )-stable from four stables S1 and one stable S2.

Case 4 : n = 5p + 3 and p > 2. We define two stables S1 and S2 as follows:

S1 : (p + 1, p, p + 1)-stable S2 : (p− 1, p + 3, p− 1)-stable8>>>>>><>>>>>>:

v1, v6, v10, v15 ∈ V (S1)
e1
8, e1

12, e1
16 ∈ E1(S1)

e3
0, e3

2, e3
4, e3

11 ∈ E3(S1)
v22+5i ∈ V (S1) 0 ≤ i ≤ p− 4,
e1
19+5i ∈ E1(S1) 0 ≤ i ≤ p− 4,

e3
18+5i ∈ E3(S1) 0 ≤ i ≤ p− 4.

8>><>>:
e1
0, e1

2, e1
4, e1

6 ∈ E1(S2)
v8+5i ∈ V (S2) 0 ≤ i ≤ p− 2,
e1
10+5i ∈ E1(S2) 0 ≤ i ≤ p− 2,

e3
9+5i ∈ E3(S2) 0 ≤ i ≤ p− 2.

Therefore, we obtain a fractional ( 5p+3
5 , 5p+3

5 , 5p+3
5 )-stable from four stables S1 and one stable

S2.
Case 5 : n = 5p + 4 and p ≥ 1. As for the previous cases we define the two stables which

form the fractional ( 5p+4
5 , 5p+4

5 , 5p+4
5 )-stable as follows:

S1 : (p, p + 2, p)-stable S2 : (p + 2, p− 1, p + 2)-stable8>><>>:
e1
0, e1

2 ∈ E1(S1)
v4+5i ∈ V (S1) 0 ≤ i ≤ p− 1,
e1
6+5i ∈ E1(S1) 0 ≤ i ≤ p− 1,

e3
5+5i ∈ E3(S1) 0 ≤ i ≤ p− 1.

8>>>><>>>>:
v0, v2, v7 ∈ V (S2)
e3
1, e3

3, e3
5 ∈ E3(S2)

v9+5i ∈ V (S2) 0 ≤ i ≤ p− 2,
e1
11+5i ∈ E1(S2) 0 ≤ i ≤ p− 2,

e3
10+5i ∈ E3(S2) 0 ≤ i ≤ p− 2.

Thus, we obtain a fractional ( 5p+4
5 , 5p+4

5 , 5p+4
5 )-stable from three stables S1 and two stables

S2. 2 2

Applying Lemma 8, Lemma 9 and Corollary 1 (or Lemma 2), we obtain the following two
corollaries :

Corollary 5 For any circulant graph Cn(1, 3) with n ≥ 9 and n 6∈ {12, 13, 17} , the fractional
total chromatic number is

χ
′′

f (Cn(1, 3)) = 5.

Corollary 6 For any circulant graph Cn(1, k) with n ≥ 9, k ≤ bn−1
2 c and k 6≡ 0 mod 3, the

fractional total chromatic number is

χ
′′

f (Cn(1, k)) = 5.
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5 Concluding remarks

For cubic type 2 circulant graphs, we have derived asymptotically optimal upper bounds on the
fractional total chromatic number. An interesting task could be to find good approximate of the
circular total chromatic number of these graphs. In particular, is the 9

2 bound of Hackmann and
Kemnitz close to the optimal? In a more general setting, like for the non-total version for which
some circulants are known to be star extremal (i.e. satisfy χf = χc, see [10]), are there circulant
graphs for which the fractional total chromatic number is equal to the circular total chromatic
number?

For 4-regular circulant graphs Cn(1, k), we have determined the total chromatic number for
some specific cases and the fractional chromatic number when k 6≡ 0 mod 3. For k ≡ 0 mod 3, our
method to construct a (a, a, q)-stable does not work because it is not possible to build the stable
by alternating vertices and edges of length one too many times. Nevertheless, it seems possible to
construct complete balanced fractional stables in this case; hence we think that χ′′f (Cn(1, 3t)) = 5.
Moreover, having computed (with the help of the computer) the total chromatic number of Cn(1, k)
for the first values of n and k, we conjecture that all but except a finite number of 4-regular circulant
graphs Cn(1, k) are type 1.

Finally, our method to compute the fractional total chromatic number of 4-regular circulant
graphs Cn(1, k), k 6≡ 0 mod 3 could perhaps be used to compute the fractional total chromatic
number of `-regular circulant graphs Cn(1, k1, k2, . . . , k`−1) with ki 6≡ 0 mod 3, 1 ≤ i ≤ `− 1.
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