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Abstract

The study of a variation of the marking game, in which the first player marks vertices
and the second player marks edges of an undirected graph was proposed by Bartnicki et al.
in [Game chromatic number of Cartesian product graphs, Electron. J. Combin. 15 (2008)
#R72]. In this game, the goal of the second player is to mark as many edges around an
unmarked vertex as possible, while the first player wants just the opposite. In this paper,
we prove various bounds for the corresponding graph invariant, the vertex-edge coloring
number colve(G) of a graph G. In particular, every (finite or infinite) graph G whose edges
can be oriented in such a way that the maximum out-degree is bounded by an integer d has
colve(G) ≤ d+ 2. We investigate this invariant in (classes of) planar graphs, including some
infinite lattices. We present a close connection between the vertex-edge coloring number of
a graph G and the game coloring number of the subdivision graph S(G). In our main result,
we bound the vertex-edge coloring number in complete graphs from below and from above,
and while colve(Kn) ≤ dlog2 ne+ 2, the difference between the upper and the lower bound is
roughly log2(log2 n). The latter results are in fact true for any multigraph whose underlying
graph is Kn.
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1 Introduction

The coloring game on graphs was introduced independently by Gardner [11] and Bodlander [4],

and was henceforth studied by a number of authors. The initial version of the coloring game

triggered numerous investigations, which resulted in the development of various methods and

strategies; see the brief survey on different kinds of coloring games by Bartnicki et al. [3]. A
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close variation of the coloring game, which has been one of the main tools for bounding the game

chromatic number, is the marking game as introduced by Zhu [17] (see also [1, 5, 12, 13, 14, 16, 18]

for some further studies). The marking game can be viewed as the game version of the coloring

number, which was introduced by Erdős and Hajnal [9] for infinite graphs. One can make a small

modification of the definition from [17] so that it works for infinite graphs. The marking game is

played on a graph G by two players, Alice and Bob, who alternate turns in choosing a previously

unchosen vertex v of G; at the point v is chosen its score s(v) is determined as the cardinality of

the set of (previously) chosen neighbors of v. The resulting invariant, the game coloring number

is defined as colg(G) = 1 + sup{s(x) |x ∈ V (G)}, where it is assumed that Alice’s goal is to

minimize and Bob’s goal is to maximize the final score and both players play optimally. For all

concepts mentioned, but not defined in this paper we refer to [7].

The vertex-edge marking game has been defined by Bartnicki et al. [2] as a variation of the

marking game on vertices: as usual, two players play the game, and while the first player Alice

marks vertices, Bob marks edges. The goal of Bob is to surround an unmarked vertex by as many

marked edges as possible, while the goal of Alice is opposite; she wishes to keep the number of

marked edges incident to an unmarked vertex as small as possible. The score of a vertex v at

a certain state t of the game, scoret(v), is the number of marked edges incident with v if v is

unmarked at state t, and 0 otherwise. The score of v ∈ V (G) is score(v) = supt{scoret(v)}, and

the vertex-edge coloring number is

colve(G) = sup
v∈V (G)

{score(v)}+ 1 .

Note that the above definition of the vertex-edge coloring number is well defined for both

finite and infinite graphs and all results we give hold for infinite graphs as well, unless otherwise

stated. Also note that the vertex-edge marking game can be extended to multigraphs (allowing

multiple edges between two vertices). We begin with the following obvious observation.

Lemma 1. For every multigraph G, if H is a submultigraph of G, then we have colve(H) ≤
colve(G).

The vertex-edge coloring number of a graph G is closely related to the game coloring number

of the subdivision S(G) of G, obtained by subdividing every edge of G exactly once:

Proposition 2. If colve(G) > 2, then colve(G) = colg(S(G)).

(The proof of this result is given in Section 5.) Through this connection, one can de-

rive from [13, Example 6.1] that colve(Kn,n) is unbounded when n grows. Consequently, also

{colve(Kn) |n ∈ N} is unbounded, and we give some light on the asymptotic behaviour of the

vertex-edge coloring number in complete graphs. More precisely, we prove that

blog2(n− 1)c − dlog2 blog2(n− 1)ce+ 2 ≤ colve(Kn) ≤ dlog2 ne+ 2. (1)
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In fact, the upper bound in (1) holds even if Kn is generalized to K
(p)
n , where each edge of Kn is

replaced by the set of multiple edges of an arbitrarily large cardinality p. For the upper bound

we model the game as a process on sorted words of integers that represent the positions in the

game.

The paper is organized as follows. In the next section, we prove a basic auxiliary result, which

we call the Orientation Lemma, and give several immediate consequences of this result, related to

degeneracy and arboricity. In Section 3, we infer from the Orientation Lemma that colve(G) ≤ 5

in finite planar graphs G, and prove sharp upper bounds for the vertex-edge coloring number in

cactus graphs and finite outerplanar graphs (which are 3 and 4, respectively). We also determine

the exact value of the invariant in the hexagonal lattice and the square lattice, and bound it

in the triangular lattice. Section 4 is concerned with complete graphs and the proof of (1). In

Section 5 we prove Proposition 2, and in the last section we propose several open problems.

2 Constrained degree orientations

In this section, we present a general upper bound for the vertex-edge coloring number of a graph

which involves orientations of its edges. We also give some immediate consequences of this result

that will be applied in several proofs of subsequent sections.

A graph has a d-bounded orientation if its edges can be oriented in such a way that the

maximum out-degree of the vertices in the resulting digraph is at most d. The concept was

introduced under this name by Chrobak and Eppstein [6] although similar concepts have been

studied earlier (see e.g. [10]).

Lemma 3 (Orientation Lemma). If G is a graph which has a d-bounded orientation, then

colve(G) ≤ d + 2.

Proof. Consider an oriented digraph D obtained from G by orienting its edges in such a way that

outdeg(v) ≤ d for all v ∈ V (G). Alice’s strategy to maintain score(v) ≤ d + 1 for every vertex

v is as follows. Suppose that Bob marked an edge e = uv, and u → v is the orientation of e in

D. Then Alice marks v if v has not yet been marked (and otherwise she marks any unmarked

vertex). Note that at the point v was marked, uv is the only marked edge in G for which the

orientation is towards v. Since v has outdegree at most d, there are thus at most d + 1 edges

incident to v that were already marked at the time v is marked. Hence score(v) ≤ d + 1, which

gives the claimed statement.

Another well-known parameter related to bounded-degree orientations is degeneracy. A k-

degenerate graph is a graph in which every subgraph has a vertex incident with at most k edges.

Alternatively, a graph is k-degenerate if and only if there is an ordering of its vertices such

that every vertex v has at most k backward edges with respect to the ordering. Note that a
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k-degenerate graph has a k-bounded orientation. Bounded orientation is also in relation with

arboricity: if G can be decomposed into k forests, then it has a k-bounded orientation (simply

orient each tree towards a root). Hence, by Lemma 3, we have the following bound.

Corollary 4. Given a positive integer k, if G is a k-degenerate graph or if its edge-set can be

decomposed into k forests, then colve(G) ≤ k + 2.

Since colve(P6) = 3 we get the following result.

Corollary 5. For any forest F we have colve(F ) ≤ 3 and the bound is tight.

3 Planar graphs

Using the tools of Section 2 and other known results, we derive sharp upper bounds for the

vertex-edge coloring number in several classes of planar graphs. In particular, we find exact

values of the vertex-edge coloring numbers of two infinite lattices.

First, since every finite planar graph has a 3-bounded orientation (which can even be con-

structed in linear time, see [6]), we infer by the Orientation Lemma the following general bound

for planar graphs.

Proposition 6. For every finite planar graph we have colve(G) ≤ 5.

We next present an auxiliary result concerning a lower bound for the vertex-edge coloring

number, for which we need the following definition. In a graph G on which the vertex-edge

marking game is played, a free-path is a path P of length at least 3 whose inner vertices have

degree at least 3 in G and are unmarked and whose endvertices have incident marked edges in P .

Lemma 7 (Free-path Lemma). If at some state in the vertex-edge coloring game, a graph G

contains a free-path and it is Bob’s turn, then Bob has a strategy to force colve(G) ≥ 4.

Proof. Let P = (x1, x2, . . . , x`+1) be a free-path of length ` ≥ 3 in G. We prove the lemma by

induction on `. If ` = 3 then Bob marks the edge x2x3 (if it is already marked, then he marks

an arbitrary unmarked edge), leading to two unmarked vertices x2 and x3 with score 2. In the

next step Alice can mark at most one vertex from {x2, x3}, thus there exists i ∈ {2, 3} such that

xi is unmarked after that step. Then Bob marks an edge incident with xi and enforces the score

of 3 on xi. Assume now the lemma is true for free-paths of length at most `′ = `− 1. We prove

that Bob can ensure a score of 3 with the free-path P of length `. Bob marks the edge x2x3 (or

an arbitrary unmarked edge if x2x3 is already marked). If there is an edge incident to x2 that

is not from P and is already marked, then score(x2) ≥ 3 and the proof is completed. Thus we

may assume that at this state of the game, the only marked edges incident to x2 are x1x2 and

x2x3. If Alice in her next step marks x2, then we have a free-path (x2, x3, . . . , x`+1) of length
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` − 1 which, by induction, gives the result. Else, if Alice does not mark x2, then Bob can mark

an unmarked edge incident with x2 to obtain a score of 3 on x2, which implies colve(G) ≥ 4.

u1 u2 u3 u4 u5

v1 v2 v3 v4 v5

Figure 1: The graph H and one of the two disjoint copies of the graph G (inside the dashed
area) contained in H; the thick line indicating the first edge chosen by Bob.

We are now able to prove the following result for outerplanar graphs. The Cartesian product

G�H of two graphs G and H is the graph with vertex set V (G)× V (H) and in which vertices

(g1, h1) and (g2, h2) are adjacent if either g1g2 ∈ E(G) and h1 = h2, or g1 = g2 and h1h2 ∈ E(H).

Proposition 8. Let G be a finite outerplanar graph, then colve(G) ≤ 4 and the bound is tight.

Proof. Outerplanar graphs are 2-degenerate, hence Corollary 4 gives the upper bound. For the

tightness, we prove that the graph H = P10 �P2 with a leaf added on each of its four vertices

of degree 2 satisfies colve(H) ≥ 4. Let G be the graph P5 �P2 with an added leaf on two

adjacent vertices of degree 2. We let ui and vi, for i ∈ {1, . . . , 5} be the vertices of G such that,

for i ∈ {1, 2, 3, 4}, ui, vi, ui+1 and vi+1 is an induced square of G (uivi, ui+1vi+1, uiui+1 and

vivi+1 being the edges of this square). Remark that there are two disjoint copies of G in H (see

Figure 1). Consequently, whatever the first vertex marked by Alice, there remains one copy of G

unmarked by Alice. The strategy of Bob starts by marking the edge u4v4 of this unmarked copy

of G in H (see Figure 1).

First, if Alice does not mark u4 or v4, then there is at least one edge consisting of unmarked

vertices among u3v3 and u5v5 and Bob marks this edge, say it is u3v3. Whatever the vertex Alice

marks next, there is a free-path of length 3 between either v3 and v4 or between u3 and u4, and

hence by Lemma 7 there is a vertex of score 3.

Second, if Alice marks u4 or v4, then suppose, without loss of generality, that Alice has marked

v4. In this case Bob marks the edge u2v2. We distinguish two cases. In the case Alice does not

mark u2 or v2, then Bob marks an edge containing only non-marked vertices among u1v1 and

u3v3 and whatever the vertex Alice marks, Bob can mark an edge between two unmarked vertices

so that they are now both incident with two marked edges. In the case Alice marks u2, there is a

free-path (v4, u4, u3, v3, v2, u2) and thus by Lemma 7, Bob can force a score of at least 3 in some

vertex. Otherwise if Alice marks v2, then there is again a free-path (v4, u4, u3, u2, v2), hence,

again by Lemma 7, colve(G) ≥ 4.
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A cactus graph is a connected graph in which any two simple cycles have at most one vertex

in common. Such graphs have a tree structure, i.e., each of its blocks is either a cycle or an edge

and the intersection graph of its blocks is a tree. Since every cactus graph G is outerplanar, we

have colve(G) ≤ 4 by Proposition 8 for such graphs. However, we prove a stronger bound in the

next theorem.

Theorem 9. For every cactus graph GC , we have colve(GC) ≤ 3.

Proof. Assume that GC has at least one cycle C1 since otherwise GC would be a tree and hence

Proposition 6 would allow to conclude.

Then in each other block B of GC , there is a unique vertex x that is closer to C1 than the

other vertices of B (by the tree structure of the cactus). We call this vertex x the head of B. For

the cycle C1, we choose an arbitrary vertex to be the head.

The strategy of Alice is the following:

R1. At the beginning, Alice marks any vertex of C1.

R2. If Bob has marked an edge e that does not lie in a cycle, then if possible, Alice marks the

head of e, otherwise (if the head is already marked) Alice marks an arbitrary unmarked

vertex of GC .

R3. If Bob has marked an edge of a cycle C of GC and no other edges of C are marked, then if

possible, Alice marks the head of C, otherwise she marks an arbitrary unmarked vertex of

GC .

R4. Otherwise, if Bob marks an edge e = uv of C and C had already marked edges, then if

possible, Alice marks among u and v the vertex that is closer to the first marked edge of C

along the path that does not cross the head of C. If this is not possible (the chosen vertex

is already marked), then Alice marks an arbitrary vertex of GC .

We now prove that with this strategy for Alice, there will not exist an unmarked vertex u

that is incident with more than two marked edges. If u is not in a cycle, then by Rule R2, only

the edge emanating from u towards the root cycle C1 and at most one edge in the other direction

may be marked at the time u is marked. If u lies in a cycle C of GC and u has both of its two

incident edges in C marked, then other edges incident with u are not marked, by Rules R2 and

R3. In addition, by Rule R4, Alice will mark u when both of the incident edges of u in C are

marked. Otherwise, if at most one edge in C, which is incident with u, is marked, then by Rules

R2 and R3, u will be marked as the head of any other edge (or the head of the corresponding

cycle) with which u is incident. Hence, in either case, as soon as two edges incident with u are

being marked, u will be marked, thus the score of u is at most 2.

Theorem 10. If H is the infinite hexagonal lattice, then colve(H) = 4.
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Proof. It is easy to orient the edges of H in such a way that each vertex has out-degree at most 2

(see Figure 2 showing a portion of the hexagonal lattice with the orientation of edges depicted),

hence, by Lemma 3, we infer colve(H) ≤ 4. To prove the lower bound, we are going to show that

Bob has a strategy which ensures a score of 3 in some vertex of H.

Consider a sufficiently large portion of the hexagonal lattice such that after Alice’s first move,

Bob is able to mark an edge e1 = x1y1 that is far enough from the vertex marked by Alice

(distance 7 should suffice). See Figure 2 for the names of the other edges and vertices considered.

If Alice does not mark x1 or y1, then Bob marks an edge e ∈ {e11, e12} such that all vertices of

the 6-cycle C containing e1 and e are unmarked. Hence whatever the vertex Alice marks there

is a free-path of length 4 on C and by Lemma 7, Bob has a way to force a score of 3.

Now assume, without loss of generality, that Alice has marked vertex x1. Then Bob marks

the edge e2 = x2y2. Suppose that in the next move Alice does not mark vertex y1. Then there

remains a free path between either x2 (if y2 is not marked) or y2 (if x2 is not marked) and x1

and by Lemma 7, Bob has a way to force a score of 3 in some vertex.

e11

e12

x1

y1x2

y2

x3

y3

Figure 2: A part of the hexagonal lattice with 2-bounded orientation and some designated edges
and vertices.

Otherwise, if Alice marks y1 then Bob marks the edge e3 = x3y3, by which he gets two marked

edges of the 6-cycle, none of which vertices is marked. Hence, whatever the vertex marked by

Alice, there will remain a free-path between x2 or y2 and x3 or y3 and thus Bob will be able

again to force a score of 3, yielding colve(H) ≥ 4.

Proposition 11. If S is the infinite square lattice, then colve(S) = 4.

Proof. Since the graph H from the proof of Proposition 8 is a subgraph of S, it follows from

Lemma 1 that 4 = colve(H) ≤ colve(S).

For the upper bound we use the Orientation Lemma, noting that S can be oriented in such

a way that the out-degree of every vertex of S is bounded by 2, see Figure 3.

For the triangular lattice, there is an orientation of its edges such that the out-degree of every

vertex is 3 (see Figure 3), hence we infer by Lemma 3 the following upper bound.
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Figure 3: The square lattice with 2-bounded orientation and the triangular lattice with 3-
bounded orientation.

Proposition 12. If T is the infinite triangular lattice, then colve(T ) ≤ 5.

Since H is a spanning subgraph of T , we infer the lower bound colve(T ) ≥ 4. We wonder

what is the exact value of the vertex-edge coloring number of T . The question is related also to

the exact upper bound of this number in planar graphs.

4 Complete graphs

In order to prove the upper bound on the vertex-edge marking game on complete graphs, we find

convenient to model the game as a process on sorted words of integers that will represent the

positions of the game (i.e., the number of incident marked edges of each unmarked vertex). This

model enables us to prove the upper bound for a family of multigraphs that generalize complete

graphs; notably, given a positive integer n and a non-zero cardinal number p, the multigraph

K
(p)
n has n vertices and between each pair of vertices there are p parallel edges.

We first introduce some notation and two lemmas on sorted words. Let S be a finite sequence

of non-negative integers in non-increasing order, i.e., let S = s1s2 · · · sp be a word over the

alphabet of integers, with s1 ≥ s2 ≥ · · · ≥ sp; p = |S|. This is called a sorted word. We consider

the process that starts from a sorted word S and apply inductively the operation that consists

in suppressing the first letter s1 of the word and adding the value 1 to two distinct letters of

the word (and then reordering the letters of the word in such a way that it becomes a sorted

word). More formally, let f be a function that maps a sorted word S = s1 · · · sp, where p ≥ 3,

to a sorted word T = t1 · · · tp−1, such that there exist i, j ∈ {2, . . . , p}, i 6= j, and s′k = sk+1 for

j 6= k + 1 6= i, and s′i−1 = si + 1, s′j−1 = sj + 1, and T is obtained from S′ = s′1s
′
2 · · · s′p−1 by

an eventual reordering of S′ to create a non-increasing order. We then write f(S) = T . When

p = 2, we let f(s1s2) = s2 + 1 (that is, the resulting word T is of length 1).

Let M(S) be the maximum integer in a word that can be obtained by this process starting

from the word S. More formally, let m(S) be the maximum (i.e., the first) integer of a word S.

Then let SS = {S′| ∃f1, . . . , fk : S′ = fk ◦ . . . ◦ f1(S)}. Alternatively, we can define M(S) as

8



max{m(S′)| S′ ∈ SS}.
We also define the partial order � on sorted words by S � S′ if |S| ≤ |S′| and for each i,

1 ≤ i ≤ |S|, si ≤ s′i.

Lemma 13. The following properties hold for sorted words.

(i) if S � S′, then M(S) ≤M(S′);

(ii) if f(S) = S′, then M(S′) ≤M(S);

(iii) for any positive integer i, M(1i) = 1 + M(0i);

(iv) if M(S′) > s′1, |S| = |S′|, and si ≥ s′i for every integer i, i ≥ 2, then M(S) ≥M(S′).

(v) for any integers r ≥ 2 and s ≥ 2, we have M(1r0s) ≤M(1r+10s−2).

Proof. (i) Let Sm be the word of SS such that m(Sm) = M(S). Let f1, . . . , fk be the functions

such that Sm = fk ◦ . . . ◦ f1(S). Since S � S′, then clearly, for the word S′m = fk ◦ . . . ◦ f1(S′)

we have m(S′m) ≥ m(Sm) = M(S).

(ii) If f(S) = S′, then SS′ ⊆ SS , which implies that M(S′) ≤M(S).

(iii) Let Sm be a sorted word of S0i such that m(Sm) = M(0i). The same sequence of functions

used to obtain Sm from 0i can be used on 1i to obtain a sorted word S′m such that m(S′m) = M(1i).

We infer m(S′m) = m(Sm) + 1.

(iv) Let S′m be the word of SS′ such that m(S′m) = M(S′). Since M(S′) > s′1, there exist the set

of functions f1, . . . , fk such that S′m = fk ◦ . . . ◦ f1(S′). Note that fk ◦ . . . ◦ f1(S) yields a sorted

word Sm such that M(S) ≥ m(Sm) ≥ m(S′m) = M(S′).

(v) Let us prove that for any integers r ≥ 2 and s ≥ 2, we have M(1r0s) ≤ M(1r+10s−2). Let

1r0s = P0, P1, . . . , Pn = Sm be a sequence of words with fi(Pi) = Pi+1 for 0 ≤ i ≤ n − 1, and

M(1r0s) = m(Sm). Let t be the smallest integer such that Pt does not contain the subword

0s. (If such an integer t does not exists, then we have M(1r0s) = M(1r) ≤ M(1r+10s−2), by

property (i), as desired.) Let Q1 = 1r+10s−2. For any i, 2 ≤ i ≤ t, we denote by Qi the sorted

word fi−2 ◦ · · · f0(Q1). See the diagram on Figure 4.

P0 = 1r0s P1 = f0(1r0s) Pt−1 = ft−2 ◦ · · · ◦ f0(1r0s)

Q1 = 1r+10s−2 Q2 = f0(1r+10s−2) Qt = ft−2 ◦ · · · ◦ f0(1r+10s−2)

f0 f1...ft−2

f0 f1...ft−2

Figure 4: Illustration of the proof of Lemma 13.

Note that Pt−1 = ft−2 ◦ · · · ◦ f0(1r0s) = u1 . . . ur−t+10s, and Qt = ft−2 ◦ · · · ◦ f0(1r+10s−2) =

u1 . . . ur−t+1110s−2 (since f1, . . . ft−2 are functions whose composition changes the r first integers
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equal to 1 into u1 . . . ur−t+1). Observe that Pt is obtained from Pt−1 by deleting the first integer

and adding 1 to two integers, at least one of which is 0.

We distinguish two cases. If Pt was obtained from Pt−1 by adding 1 to two integers equal to 0,

then Pt = u2 . . . ur−t+1120s−2, and clearly Pt � Qt, which implies M(Pt) ≤ M(Qt) by property

(i). Thus, we have M(1r0s) = M(Pt) ≤M(Qt) ≤M(1r+10s−2).

The second case is that Pt is obtained from Pt−1 by suppressing u1, changing one integer 0

to 1 and increasing by 1 an integer ui, where i ∈ {2, . . . , r − t + 1}. Suppose ui < u2. Then, let

j be the largest index in {2, . . . , i− 1} such that uj > ui. Hence,

Pt = u2 . . . uj(ui + 1)uj+1 . . . ui−1ui+1 . . . ur−t+1110s−1.

Note that Pt � Qt, since uj ≥ ui + 1. We again derive in the same way that M(1r0s) ≤
M(1r+10s−2). Finally, suppose that ui = u2. Then Pt = (u2 + 1)u3 . . . ur−t+110s−1. If M(P0) =

M(Pt) = u2 + 1, then M(Qt) ≥ u2 + 1, because for Q′ = f(Qt), where f is a function that

increases the second integer by 1, we get M(Qt) ≥M(Q′) ≥ u2+1. Otherwise, if M(Pt) > u2+1,

then by property (iv) applied on Qt and Pt, we get M(Qt) ≥ M(Pt). In either case, we infer

M(1r0s) = M(Pt) ≤M(Qt) ≤M(1r+10s−2).

The properties of Lemma 13 are used to prove the following lemma.

Lemma 14. For any k ≥ 1 we have M(02
k+1) = k + 1 = dlog2(2k + 1)e.

Proof. Let t = 2k + 1, where k ≥ 1. Using the sequence of functions that always change two

zeros, we get the sequence of words, 0t, 120t−3, . . . , 1d
t
2 e−102, 1d

t
2 e. Therefore M(1d

t
2 e) ≤M(0t).

Now, we show the reversed inequality, M(0t) ≤M(1d
t
2 e). Since S0t = S120t−3 ∪{0t}, we have

M(0t) = M(120t−3). If k = 1, that is, t = 3, this gives M(0t) = M(03) = M(12) = M(1d
t
2 e).

Otherwise, we apply Lemma 13(v) several times and we get M(0t) = M(120t−3) ≤M(130t−5) ≤
. . . ≤M(1d

t
2 e).

We prove M(02
k+1) = k+1 by induction on k. When k = 1, we clearly have M(000) = 2. By

the above, M(02
k+1) = M(12

k−1+1). By Lemma 13(iii), this is in turn equal to 1 + M(02
k−1+1),

which is by induction equal to k. Hence, M(02
k+1) = k + 1.

Corollary 15. For any n ≥ 3, we have M(0n) ≤ dlog2 ne+ 1.

Proof. For n ≥ 3, let k be the integer such that 2k−1 + 1 < n ≤ 2k + 1. Thus, by Lemma 13(i)

and Lemma 14, M(0n) ≤M(02
k+1) = k + 1 ≤ dlog2 ne+ 1.

We think that in fact M(0n) = dlog2 ne, but could not improve the upper bound from Corol-

lary 15. We are now ready to prove the upper bound for colve(K
(p)
n ).

Theorem 16. For a non-zero cardinal number p and every n ≥ 2,

colve(K
(p)
n ) ≤ dlog2 ne+ 2.
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Proof. We are going to prove the upper bound dlog2 ne + 2 for the multigraph K
(p)
n , where

p ≥ n− 1. Then, Lemma 1 yields the statement of the theorem for any p < n− 1 as well.

The strategy of Alice is to mark at each step a vertex having a maximum number of incident

edges that are marked. We will prove that whatever the strategy of Bob, there will be no

unmarked vertex with more than dlog2 ne + 1 incident marked edges. Clearly, at any step for

which there remain at least two unmarked vertices, we can assume that Bob marks an edge e = xy

with both x and y being not already marked, by which the score of two vertices is increased. When

just one vertex x remains unmarked by Alice, then Bob marks an edge incident with x increasing

its score by 1 (therefore, before the penultimate move of Alice, x and y have been unmarked,

and if they have the same number of incident marked edges at that time, then it is possible that

colve(K
(p)
n ) is attained only by the score of x). With this hypothesis, we can represent the game

by a sequence S0, S1, . . . , Sn−1 of sorted words of integers as described above; word Si, where

0 ≤ i ≤ n− 1, is the sorted word that contains the numbers of marked edges incident with each

unmarked vertex of K
(p)
n after the ith move of Bob. In addition, Si is obtained from Si−1 by a

function as described above. Since we have S0 = 0n, then, by virtue of Corollary 15, we obtain

M(S0) ≤ dlog2 ne+ 1, and hence colve(K
(p)
n ) ≤ dlog2 ne+ 2.

Clearly, plugging p = 1 in Theorem 16, we get colve(Kn) ≤ dlog2 ne+ 2. Note that Lemma 14

implies that colve(Kn) ≤ dlog2 ne+ 1, for n = 2k + 1.

Now, we prove the lower bound in (1) by presenting a strategy for Bob for which at least one

vertex will have a score of blog2(n− 1)c − dlog2 blog2(n− 1)ce+ 1 whatever Alice’s strategy.

Theorem 17. For every n ≥ 3, we have

colve(Kn) ≥ blog2(n− 1)c − dlog2 blog2(n− 1)ce+ 2.

Proof. First, we consider the graph Kn, where n = 2k +1. The strategy of Bob consists of several

steps, in each of which Bob marks edges of a matching. After the ith step Bob can ensure that

there exists a subgraph Gi with 2k−i unmarked vertices each of which is incident with i marked

edges.

Note that Alice starts the game by marking an arbitrary vertex x. Let X0 = {x} and

G0 = Kn −X0. Clearly, G0 has 2k unmarked vertices each of which is incident with 0 marked

edges (which presents the zero-th step).

We follow with the first step and it is Bob’s turn. In the next 2k−1 moves Bob marks edges of

a perfect matching of G0. During this time, Alice marks 2k−1 vertices (denote this set of vertices

by X1) of G0. Let G1 = G0 −X1, and note that G1 has (at least) 2k−1 unmarked vertices each

of which is incident with 1 marked edge. This ends the first step and note that Alice was the last

to play in this step.

In the ith step we note by induction that there exists a subgraph Gi−1 with 2k−i+1 unmarked

vertices each of which is incident with i − 1 marked edges. If there exists a perfect matching in
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Gi−1 that consists of non-marked edges, then in the next 2k−i moves Bob marks edges of this

perfect matching. During this time, Alice marks 2k−i vertices (denote this set of vertices by Xi)

of Gi−1. Then Gi = Gi−1 −Xi has (at least) 2k−i unmarked vertices each of which is incident

with i marked edges. We apply Dirac’s theorem [8], which ensures a Hamiltonian cycle in a

graph H with even order if each vertex has degree at least half of the order. This in turn implies

the existence of a perfect matching in H. Therefore, Bob can ensure the existence of a perfect

matching of non-marked edges in Gi−1 if

|V (Gi−1)| − 1− (i− 1) ≥ 1

2
|V (Gi−1)|.

That is, 2k−i+1 − i ≥ 2k−i, which gives

2k−i ≥ i. (2)

The number of steps (in Bob’s strategy) is the largest i such that (2) is fulfilled. When this

condition is no longer fulfilled (after the ith step), Bob can mark an edge incident to an unmarked

vertex of Gi by which the score of this vertex is at least i + 1 (and so colve(Kn) ≥ i + 2).

Since i ∈ N, the largest i satisfying (2) is k − dlog2 ke or k − dlog2 ke + 1 (depending on k).

In the case n = 2k + 1, we get colve(Kn) ≥ log2 (n− 1)− dlog2 (log2 (n− 1))e+ 2.

Finally, let 2k ≤ n− 1 < 2k+1. Therefore,

colve(Kn) ≥ colve(K2k+1) ≥ k − dlog2 ke+ 2 ≥ blog2(n− 1)c − dlog2 blog2(n− 1)ce+ 2.

5 Relations with the marking game

We will prove that the vertex-edge coloring number of a graph G coincides with the game coloring

number of the graph S(G) obtained from G by subdividing all of its edges once, as soon as the

vertex-edge coloring number of G is at least 3 (Proposition 2).

First, we prove that the class of graphs G with colve(G) ≤ 2 is small. Clearly, only graphs

with no edges have this number equal to 1. We characterize the graphs with colve(G) = 2 as

follows.

Proposition 18. If G is a non-empty graph, then colve(G) = 2 if and only if G is a forest with

at most one connected component of diameter at most 4 and all other connected components of

diameter at most 2.

Proof. First, suppose that colve(G) = 2. Remark that if Bob can mark an edge having each of

its end-vertices unmarked and incident to an unmarked edge, then it implies colve(G) ≥ 3. If G

contains a cycle, such an edge can be found in Bob’s first move. Thus G is a forest. If G has a
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connected component T of diameter at least 5 or if G contains two connected components both

having diameter at least 3, such an edge can be found at first Bob’s move whatever the vertex

Alice has chosen in her first move.

For the converse, let G be a non-empty forest with at most one connected component T1 of

diameter at most 4 and all other connected components T2, . . . , Tk of diameter at most 2. Let

ci be a center of Ti for any i ∈ {1, . . . , k}. The strategy of Alice is to first mark c1 and then

after each Bob’s move (in which he marks an edge e), she marks (if possible) an unmarked vertex

incident with e that is not a leaf. Therefore the score of each vertex in G is at most 1 and

colve(G) = 2.

For the purpose of proving the next result, which connects the vertex-edge marking game on

a graph G with the (standard) marking game on the subdivided graph S(G), we propose two

variations of the vertex-edge marking game. In the first variation, which we call vertex-edge-

star-Alice marking game, Alice is allowed to play also on the edges while Bob’s role does not

change. The corresponding score of the game will be denoted by col∗Ave (G), and is defined exactly

the same as in the standard vertex-edge marking game, that is, sup
v∈V (G)

{score(v)}+ 1. As in the

vertex-edge marking game, score(v) = supt{scoret(v)}, where scoret is the number of marked

edges surrounding the vertex v at state t if v is unmarked, and 0 if v is marked at state t. Since

Alice may choose to play on the vertices of G as long as possible also in the vertex-edge-star-

Alice marking game, and it is not to her advantage to play on the edges, it is clear that the new

invariant gives the same score.

Similarly, we call vertex-edge-star-Bob marking game the game in which Bob is allowed to

play also on the vertices while Alice’s role does not change. The corresponding score of the game

will be denoted by col∗Bve (G), and is again defined in the same way as above. Since Bob may

choose to play on the edges of G as long as possible in this version of the vertex-edge marking

game, and it is not to his advantage to play on the vertices, we get the following observation.

Lemma 19. For any graph G, col∗Ave (G) = colve(G) = col∗Bve (G).

We are now able to prove Proposition 2.

Proof of Proposition 2. Consider a strategy of Alice played in the vertex-edge-star-Bob marking

game on G, which bounds score(v) from above by col∗Bve (G)−1 for all vertices v of G. Alice can use

the same strategy in the marking game in the graph S(G) by playing only on the original vertices

of G. During the marking game on S(G), she will imagine a vertex-edge-star-Bob marking game

be played on G, and will copy her moves from the optimal strategy on the vertex-edge-star-Bob

marking game on G to the real game played on S(G). Note that the resulting score s(v) of a

vertex v is bounded by col∗Bve (G)−1 if Alice plays optimally (since the score of subdivided vertices

is at most 3, the maximum score will be achieved by an original vertex except possibly when

colve(G) = 3). This gives colg(S(G)) ≤ col∗Bve (G).
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To see the reversed inequality, let us consider a strategy of Bob in the vertex-edge-star-Alice

marking game, which ensures that supv∈V (G){score(v)} of a vertex v in G is at least col∗Ave (G)−1.

While playing the marking game on S(G), Bob uses this strategy in the vertex-edge-star-Alice

marking game on G, by playing the subdivided vertices of S(G) in the corresponding order. In

this way, sup{s(v) | v ∈ V (G)} ≥ col∗Ave (G)−1, which gives colg(S(G)) ≥ col∗Ave (G). By Lemma 19,

the proof follows.

The above result implies that the results in this paper for the vertex edge coloring number of

a graph G yield the same results for the game coloring number of the subdivision graph S(G),

as soon as G is not a forest with at most one connected component of diameter at most 4 and all

other connected components of diameter at most 2. (Otherwise, one can check that, for instance,

colve(P3) = 2, yet colg(S(P3)) = colg(P5) = 3.) Combining Proposition 2 with Theorem 9 we

can improve the general upper bound 5 for the game coloring number of cactus graphs given by

Sidorowicz [15] to the value 3 in the special case of subdivided cactus graphs.

6 Concluding remarks

There are a number of well studied classes of graphs for which it would be interesting to establish

whether the vertex-edge coloring number is bounded by a constant. (Clearly, if a class of graphs

is k-degenerate for some fixed k, then Corollary 4 provides a positive answer.) In particular, we

propose to consider the class of hypercubes, and pose the following

Question 1. Is {colve(Qn) |n ∈ N}, where Qn denotes the hypercube of dimension n, bounded

by a constant?

As proven in Section 3, finite planar graphs admit a general upper bound of 5 for their vertex-

edge coloring number. There are several examples of (finite or infinite) planar graphs G with

colve(G) = 4, so we wonder what is the correct sharp bound in planar graphs. We thus pose the

following question.

Question 2. Is there a (finite) planar graph G with colve(G) = 5?

(Note that for infinite planar graphs we did not establish a general upper bound for the

vertex-edge marking game.) It seems that a good candidate for which Question 2 could have an

affirmative answer is the triangular lattice.

Question 3. Is colve(T ) for the triangular lattice T equal to 4 or 5?

Trivially, the following general upper bound colve(G) ≤ ∆(G) + 1 holds in every graph G.

Note that colve(Cn) = 3 for any n ≥ 3, hence the bound is attained in cycles, as well as in the

hexagonal lattice, since colve(H) = 4. We propose the problem of characterizing the graphs G in

which colve(G) = ∆(G) + 1, and pose the question about the most interesting case.
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Question 4. For which graphs G with maximum degree 3 we have colve(G) = 4?

A logarithmic upper bound for complete graphs, see Theorem 16, suggests that in many

classes of finite graphs the vertex-edge coloring number is bounded by a constant. Therefore, it

would be interesting to find a graph operation by which one could built a family of finite graphs

with unbounded vertex-edge coloring number. We think that the lexicographic product of graphs

could be such an operation. Let G and H be finite graphs. The lexicographic product G ◦H of

G and H has V (G ◦ H) = V (G) × V (H), and (g, h)(g′, h′) ∈ E(G ◦ H) if either g = g′ and

hh ∈ E(H), or gg′ ∈ E(G). We propose the following question for which we suspect it has an

affirmative answer.

Question 5. Is it true that colve(G ◦K4) ≥ colve(G) + 1? More generally, is colve(G ◦K2n+1) ≥
colve(G) + n?
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